1
|
Sun Y, Zhang Q, Qin Z, Li K, Zhang Y. Laboratory study on the characteristics of fresh and aged PM 1 emitted from typical forest vegetation combustion in Southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124505. [PMID: 38968986 DOI: 10.1016/j.envpol.2024.124505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The frequency and intensity of forest fires are amplified by climate change. Substantial quantities of PM1 emitted from forest fires can undergo gradual atmospheric dispersion and long-range transport, thus impacting air quality far from the source. However, the chemical composition and physical properties of PM emitted from forest fires and its changes during atmospheric transport remain uncertain. In this study, the evolution of organic carbon (OC), elemental carbon (EC), water-soluble ions, and water-soluble metals in the particulate phase of smoke emitted from the typical forest vegetation combustion in Southwest China before and after photo-oxidation was investigated in the laboratory. Two aging periods of 5 and 9 days were selected. The OC and TC mass concentrations tended to decrease after 9-days aged compared to fresh emissions. OP, OC2, and OC3 in PM1 are expected to be potential indicators of fresh smoke, while OC3 and OC4 may serve as suitable markers for identifying aged carbon sources from the typical forest vegetation combustion in Southwest China. K+ exhibited the highest abundant water-soluble ion in fresh PM1, whereas NO3- became the most abundant water-soluble ion in aged PM1. NH4NO3 emerged as the primary secondary inorganic aerosol emitted from typical forest vegetation combustion in Southwest China. Notably, a 5-day aging period proved insufficient for the complete formation of the secondary inorganic aerosols NH4NO3 and (NH4)2SO4. After aging, the mass concentration of the water-soluble metal Ni in PM1 from typical forest vegetation combustion in Southwest China decreased, while the mean mass concentrations of all other water-soluble metals increased in varying degrees. These findings provide valuable data support and theoretical guidance for studying the atmospheric evolution of forest fire aerosols, as well as contribute to policy formulation and management of atmospheric environment safety and human health.
Collapse
Affiliation(s)
- Yuping Sun
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qixing Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Zhenhai Qin
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Kaili Li
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yongming Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
2
|
Tripathi A, Park J, Pho T, Champion JA. Dual Antibacterial Properties of Copper-Coated Nanotextured Stainless Steel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311546. [PMID: 38766975 DOI: 10.1002/smll.202311546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Bacterial adhesion to stainless steel, an alloy commonly used in shared settings, numerous medical devices, and food and beverage sectors, can give rise to serious infections, ultimately leading to morbidity, mortality, and significant healthcare expenses. In this study, Cu-coated nanotextured stainless steel (nSS) fabrication have been demonstrated using electrochemical technique and its potential as an antibiotic-free biocidal surface against Gram-positive and negative bacteria. As nanotexture and Cu combine for dual methods of killing, this material should not contribute to drug-resistant bacteria as antibiotic use does. This approach involves applying a Cu coating on nanotextured stainless steel, resulting in an antibacterial activity within 30 min. Comprehensive characterization of the surface revealing that the Cu coating consists of metallic Cu and oxidized states (Cu2+ and Cu+), has been performed by this study. Cu-coated nSS induces a remarkable reduction of 97% in Gram-negative Escherichia coli and 99% Gram-positive Staphylococcus epidermidis bacteria. This material has potential to be used to create effective, scalable, and sustainable solutions to prevent bacterial infections caused by surface contamination without contributing to antibiotic resistance.
Collapse
Affiliation(s)
- Anuja Tripathi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia, 30332, USA
| | - Jaeyoung Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia, 30332, USA
| | - Thomas Pho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia, 30332, USA
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia, 30332, USA
| |
Collapse
|
3
|
Liu Z, Zhang H, Zhang Y, Liu X, Ma Z, Xue L, Peng X, Zhao J, Gong W, Peng Q, Du J, Wang J, Tan Y, He L, Sun Y. Characterization and sources of trace elements in PM 1 during autumn and winter in Qingdao, Northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151319. [PMID: 34757104 DOI: 10.1016/j.scitotenv.2021.151319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric sub-micrometer particles (PM1, particles with an aerodynamic diameter ≤ 1.0 μm) monitoring in Qingdao, a coastal city in Northern China, was conducted for two consecutive years from November 1, 2018 to January 31, 2019 (hereafter referred to as OP2018-2019) and from October 28, 2019 to January 20, 2020 (hereafter referred to as OP2019-2020). The results showed that compared with OP2018-2019, the concentrations of V, Ni, As, Pb, and Cd in PM1 in OP2019-2020 decreased by 61.9%, 31.4%, 49.2%, 25.4%, and 27.1%, respectively. For the indicators of ship emission sources, a significant reduction in V (73.3%) and Ni (22.1%) concentrations were observed after the implementation of the updated Domestic Emission Control Area (DECA 2.0) policy for ships since January 1, 2019 proposed by the Ministry of Transportation. This result demonstrated that the implementation of the DECA 2.0 policy had a significant effect on reducing ship emissions. The Field Emission Scanning Electron Microscope analysis identified the impact of ship emission sources, while the inconsistent distribution of V and Ni revealed other potential sources of Ni. The V/Ni ratios during the pre-policy and post-policy periods decreased by 40.7%. Along with the further implementation of the domestic coastal ship pollution control zone policy, V/Ni ratio should be cautiously used as a parameter for ship emission sources. The positive matrix factorization method identified five source factors: coal combustion/biomass burning (47.8%), crustal sources (21.2%), vehicle exhaust/road dust (15.1%), industrial emissions (11.1%), and ship emissions (4.9%). The contribution rates of ship emission sources before and after the DECA 2.0 policy were analyzed and found to be 5.6% and 3.4%. The potential source contribution factor analysis of As showed that the potential emission source areas were significantly reduced in OP2019-2020, which might be related to the coal fired cleanup operations conducted in Beijing-Tianjin-Hebei and surrounding areas.
Collapse
Affiliation(s)
- Ziyang Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Houyong Zhang
- Jinan Eco-environment Monitoring Center of Shandong Province, Jinan 250100, China
| | - Yisheng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangdong 511486, China.
| | - Xiaohuan Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zizhen Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Lian Xue
- Qingdao Eco-environment Monitoring Center of Shandong Province, Qingdao 266003, China
| | - Xing Peng
- School of Environment and Energy, Peking University, Shenzhen 518055, China
| | - Jiaojiao Zhao
- Jinan Eco-environment Monitoring Center of Shandong Province, Jinan 250100, China
| | - Weiwei Gong
- Laboratory of Transport Pollution Control and Monitoring Technology, Transport Planning and Research Institute, Ministry of Transport, Beijing 100028, China
| | - Qianqian Peng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jinhua Du
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jiao Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuran Tan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Lingyan He
- School of Environment and Energy, Peking University, Shenzhen 518055, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| |
Collapse
|
4
|
Effect of Sulfuric Acid Patination Treatment on Atmospheric Corrosion of Weathering Steel. METALS 2020. [DOI: 10.3390/met10050591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The requirements for the formation of a protective patina on conventional weathering steels (WS) are well known in the scientific literature related to civil structures. However, these criteria are not always given due consideration when WS is used in cultural heritage, as in the case of sculptural work. An artificial patina was produced simulating artists’ working procedures using a direct patination technique, applying a solution of 10% H2SO4 on WS specimens. These were exposed for two years in the urban atmosphere of Madrid along with weathering steel specimens without artificial patina, called natural patina. The patinas generated have been analyzed using colorimetry, micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and thickness measurements.The artificial patina color formed hardly differs from the color that the natural patina acquires from practically the beginning of its formation in the atmosphere of Madrid. After two years, the atmospheric corrosion rate of patinated WS is lower than 6 µm/year. The sulfuric acid treatment accelerates the protective ability of the patina with respect to the natural patina according to the ratio goethite to lepidocrocite (α/γ). Chromium-rich goethite is located in the inner part of the artificial patina as well as chromium-rich ferrihydrite. Ferrihydrite may act as a precursor of nanophasic goethite.
Collapse
|
5
|
Müller A, Österlund H, Marsalek J, Viklander M. The pollution conveyed by urban runoff: A review of sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136125. [PMID: 31905584 DOI: 10.1016/j.scitotenv.2019.136125] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Urban stormwater and snowmelt pollution contributes significantly to the deterioration of surface waters quality in many locations. Consequently, the sources of such pollution have been studied for the past 50 years, with the vehicular transportation sector and the atmospheric deposition identified early as the major pollution sources. In search for mitigation of this pollution, source controls, besides other measures, were recognised as effective pollution mitigation tools, whose successful implementation requires a good knowledge of pollution sources. Even though great research efforts have been exerted to document specific sources of urban runoff pollution, or specific groups of pollutants present in urban runoff, a comprehensive overview of all known contributing sources is still missing. This review contributes to closing this gap by compiling findings of previous research and critically synthesizing the current knowledge of various stormwater pollution sources. As the emphasis is placed on the sources, the related issues of implications for urban surface water quality and possible source controls for individual sources are touched upon just briefly, where required. The review showed that the atmospheric deposition, vehicular transportation-related activities and metallic building envelopes continue to be among the major pollution sources, which have been studied in a far greater detail than other sources. Furthermore, it was noted that because of the rapid advances in clean manufacturing and pollution control technologies, a large part of the body of data on stormwater quality available in the literature should be considered as historical data, which may no longer describe well the current conditions. Progressing historical data obsolescence, combined with continuing releases of new materials and chemicals, and, in some cases of new substances of potential concern, into the environment, suggests that the identification of important stormwater runoff/snowmelt pollution sources, and the associated pollutants, has been and will remain to be a work in progress.
Collapse
Affiliation(s)
- Alexandra Müller
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden.
| | - Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jiri Marsalek
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
6
|
Travassos S, Tomachuk C, de Melo H. EIS investigation and patina characterization of weathering steel exposed to each of the four seasons in the São Paulo metropolitan area. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Sha Q, Lu M, Huang Z, Yuan Z, Jia G, Xiao X, Wu Y, Zhang Z, Li C, Zhong Z, Zheng J. Anthropogenic atmospheric toxic metals emission inventory and its spatial characteristics in Guangdong province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:1146-1158. [PMID: 31018431 DOI: 10.1016/j.scitotenv.2019.03.206] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Atmospheric toxic metals (TMs) may cause adverse effects on the environment and human health due to their bioavailability and toxicity. High-resolution TMs emission inventory is important input data for assessing human exposure risks, especially synergistic toxicity of multiple toxic metals. By using the latest city- and enterprise-level environment statistical data, an emission inventory of five TMs (Hg, As, Pb, Cd, Cr) in Guangdong province for the year of 2014 was developed using a bottom-up approach. The total emissions of Hg, As, Pb, Cd and Cr in Guangdong were estimated as 17.70, 32.59, 411.34, 13.13, and 84.16 t, respectively. Major emission sources for each TM were different. Hg emissions were dominated by coal combustion (33%), fluorescent lamp (18%) and cement (17%). 78% of Hg emissions were in the form of Hg0, 19% of Hg2+, and only 3% of Hgp due to strict particulate matter control policies. Coal combustion (48%), nonferrous metal smelting (25%) and iron and steel industry (24%) were the major sources of As. Pb emissions primarily came from battery production (42%), iron and steel industry (21%) and gasoline combustion (17%). Cd and Cr emissions were dominated by nonferrous metal smelting (71%) and iron and steel industry (82%), respectively. Most of these TMs were emitted in the non-Pearl River Delta region, where the newly-built iron and steel industry, nonferrous metal smelting and cement production factories were intense. The uncertainties in the five TM emissions were high, due much to high uncertainties in TM emission factors and limited activity data. Thus, to improve the accuracy of these estimates, we recommend more field tests of TM emissions, especially for the industrial process sector. This study provides scientific support for formulating robust TMs control policies to alleviate the high risk of TMs exposure in Guangdong.
Collapse
Affiliation(s)
- Qing'e Sha
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Menghua Lu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Zhijiong Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510000, PR China
| | - Zibing Yuan
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Guanglin Jia
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Xiao Xiao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yuqi Wu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Zhiwei Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Cheng Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510000, PR China
| | - Zhuangmin Zhong
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Junyu Zheng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510000, PR China; School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China.
| |
Collapse
|