1
|
Ma W, Ding M, Bian Z. Comprehensive assessment of exposure and environmental risk of potentially toxic elements in surface water and sediment across China: A synthesis study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172061. [PMID: 38552973 DOI: 10.1016/j.scitotenv.2024.172061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
China faces a serious challenge with water pollution posed by potentially toxic elements (PTEs). Comprehensive and reliable environmental risk assessment is paramount for precise pollution prevention and control. Previous studies generally focused on a single environmental compartment within small regions, and the uncertainty in risk calculation is not fully considered. This study revealed the current exposure status of 11 PTEs in surface water and sediment across China using previously reported concentration data in 301 well-screened articles. Ecological and human health risks were evaluated and the uncertainty related to calculation parameters and exposure dataset were quantified. PTEs of high concern were further identified. Results showed Mn and Zn had the highest concentration levels, while Hg and Cd had the lowest concentrations in both surface water and sediment. Risk assessment of individual PTE showed that high-risk PTEs varied by risk receptors and environmental compartments. Nationwide, the probability of aquatic organisms being affected by Mn, Zn, Cu, and As in surface water exceeded 10 %. In sediment, Cd and Hg exhibited high and considerable risk, respectively. As was identified as the major PTE threatening human health as its carcinogenic risk was 1.45 × 10-4 through direct ingestion. Combined risk assessment showed the PTE mixture in surface water and sediment posed medium and high ecological risk with the risk quotient and potential ecological risk index of 1.76 and 558.36, respectively. Adverse health effects through incidental ingestion and dermal contact during swimming were negligible. This study provides a nationwide risk assessment of PTEs in China's aquatic environment and the robustness is verified, which can serve as a practical basis for policymakers to guide the early warning and precise management of water pollution.
Collapse
Affiliation(s)
- Wankai Ma
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Mengling Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
2
|
Wang Y, Liu R, Miao Y, Jiao L, Cao L, Li L, Wang Q. Identification and uncertainty analysis of high-risk areas of heavy metals in sediments of the Yangtze River estuary, China. MARINE POLLUTION BULLETIN 2021; 164:112003. [PMID: 33493857 DOI: 10.1016/j.marpolbul.2021.112003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
In this study, ordinary kriging (OK) and indicator kriging (IK) were used to analyze the uncertainty associated with high-risk areas of seven heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) in sediments of the Yangtze River estuary during four seasons. The OK results showed that the high-risk areas of Cd, Cr, Cu, Hg, and Pb had a high proportion, with the highest corresponding to Cr pollution (up to 60%). Predictions based on IK revealed that the proportion of high-risk areas of Cr, Cd, and Hg pollution were high, especially that of Cr was higher than 90%. However, there were uncertainties between the OK and IK results. The uncertainty results revealed that the uncertainty areas of Cr pollution were relatively large, accounting for about 30%, while those of Cd, Cu, and Hg pollution were lower than 10%.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China.
| | - Yuexi Miao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Lijun Jiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Leiping Cao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Lin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Qingrui Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
3
|
Okeke MI, Okoli AS, Diaz D, Offor C, Oludotun TG, Tryland M, Bøhn T, Moens U. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps? Viruses 2017; 9:v9110318. [PMID: 29109380 PMCID: PMC5707525 DOI: 10.3390/v9110318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.
Collapse
Affiliation(s)
- Malachy I Okeke
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Arinze S Okoli
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Diana Diaz
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| | - Collins Offor
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Taiwo G Oludotun
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Morten Tryland
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
- Artic Infection Biology, Department of Artic and Marine Biology, UIT-The Artic University of Norway, N-9037 Tromso, Norway.
| | - Thomas Bøhn
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| |
Collapse
|