1
|
Braga Martins Gonçalves EC, Gomes de Oliveira Paranhos A, Rezende Pereira A, de Queiroz Silva S, de Aquino SF. Dynamics of antibiotic resistance agents during sludge alkalinization treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125130. [PMID: 39414064 DOI: 10.1016/j.envpol.2024.125130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to assess the removal of antimicrobial resistance agents (antibiotics, antibiotic-resistant bacteria - ARB, and antimicrobial resistance genes - ARGs) from aerobic and anaerobic sludges treated with quicklime (chemical alkalinization). Different mixing ratios (25%, 35%, and 45%) and contact times (2 h and 72 h) were evaluated. The findings revealed that anaerobic sludge responded more effectively to alkaline treatment, achieving better removal rates of antibiotics, ARB, and ARGs compared to aerobic sludge. The 45% lime treatment yielded the highest antibiotic removal rates, with average reductions of 19% in aerobic sludge and 28% in anaerobic sludge. The 35% lime treatment was the most effective in reducing ARGs across both types of sludge (average removal of 2 logs). The 25% lime treatment proved most efficient for removing ARB, with average reductions of 4 logs (aerobic) and 5 logs (anaerobic). The contact time between the sludge and quicklime also influenced the removal of resistance agents. An increase in the proportion of antibiotics and the absolute concentration of ARB and ARGs was observed after 72 h compared to the samples analyzed after 2 h of contact. This increase was more pronounced in aerobic sludge samples treated with 35% and 45% lime. Despite the overall reduction, none of the monitored resistant genes or bacteria were completely eradicated in both sludge samples, raising concerns about their potential dissemination into the environment.
Collapse
Affiliation(s)
- Eliane Cristina Braga Martins Gonçalves
- Graduate Program in Environmental Engineering, School of Mines, Federal University of Ouro Preto, University Campus Morro do Cruzeiro, s/n, 35400-000, Ouro Preto, MG, Brazil
| | - Aline Gomes de Oliveira Paranhos
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, University Campus Morro do Cruzeiro, s/n, 35400-000, Ouro Preto, MG, Brazil
| | - Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, School of Mines, Federal University of Ouro Preto, University Campus Morro do Cruzeiro, s/n, 35400-000, Ouro Preto, MG, Brazil
| | - Silvana de Queiroz Silva
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, University Campus Morro do Cruzeiro, s/n, 35400-000, Ouro Preto, MG, Brazil
| | - Sérgio Francisco de Aquino
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, University Campus Morro do Cruzeiro, s/n, 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
2
|
Zhao K, Yin X, Wang N, Chen N, Jiang Y, Deng L, Xiao W, Zhou K, He Y, Zhao X, Yang Y, Zhang J, Chen A, Wu Z, He L. Optimizing the management of aerobic composting for antibiotic resistance genes elimination: A review of future strategy for livestock manure resource utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122766. [PMID: 39369531 DOI: 10.1016/j.jenvman.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Aerobic composting technology is an efficient, safe and practical method to reduce the residues of antibiotics and antibiotic resistance genes (ARGs) due to unreasonable disposal of livestock manure. Nowadays, it remains unclear how aerobic composting works to minimize the level of remaining antibiotics and ARGs in manure. Moreover, aerobic composting techniques even have the potential to enhance ARGs level. Therefore, this study conducted a literature review on ARGs variation during the composting process to assess the fate, migration, and risk features of antibiotics and ARGs in different livestock manure and compost. The relationship between ARGs reduction and crucial factors (temperature, heavy metal, and microbial community structures) in the composting process was discussed. The merits and limitations of different technologies used in compost was summarized. The effects on ARGs reduction in the aerobic composting process with various strategies was examined. We attempt to provide a fresh and novel viewpoint on the advancement of global aerobic composting technology.
Collapse
Affiliation(s)
- Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xiaowei Yin
- POWERCHINA Zhongnan Engineering Corporation Limited, Changsha, Hunan, 410014, China
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Nianqiao Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Youming Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Linyan Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Wenbo Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Kun Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xichen Zhao
- Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China.
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Liuqin He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China.
| |
Collapse
|
3
|
Sun H, Chang H, Zhu Y, Li X, Yang X, Zhou X, Wu D, Ding J, Liu Y. Strong suppression of silver nanoparticles on antibiotic resistome in anammox process. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134128. [PMID: 38555673 DOI: 10.1016/j.jhazmat.2024.134128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
This study comprehensively deciphered the effect of silver nanoparticles (AgNPs) on anammox flocculent sludge, including nitrogen removal performance, microbial community structure, functional enzyme abundance, antibiotic resistance gene (ARGs) dissemination, and horizontal gene transfer (HGT) mechanisms. After long-term exposure to 0-2.5 mg/L AgNPs for 200 cycles, anammox performance significantly decreased (P < 0.05), while the relative abundances of dominant Ca. Kuenenia and anammox-related enzymes (hzsA, nirK) increased compared to the control (P < 0.05). For antibiotic resistome, ARG abundance hardly changed with 0-0.5 mg/L AgNPs but decreased by approximately 90% with 1.5-2.5 mg/L AgNPs. More importantly, AgNPs effectively inhibited MGE-mediated HGT of ARGs. Additionally, structural equation model (SEM) disclosed the underlying relationship between AgNPs, the antibiotic resistome, and the microbial community. Overall, AgNPs suppressed the anammox-driven nitrogen cycle, regulated the microbial community, and prevented the spread of ARGs in anammox flocs. This study provides a theoretical baseline for an advanced understanding of the ecological roles of nanoparticles and resistance elements in engineered ecosystems.
Collapse
Affiliation(s)
- Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China.
| | - Huanhuan Chang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yuliang Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China; School of Civil Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Xiaoli Li
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Daishun Wu
- Fujian Provincial Key Laboratory of Coastal Basin Environment, School of Marine and Biochemical Engineering, Fujian Polytechnic Normal University, Fuqing, Fujiang 350300, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Yucan Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China; School of Civil Engineering, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
4
|
Su X, Qian F, Bao Y. The effect of bulk-biochar and nano-biochar amendment on the removal of antibiotic resistance genes in microplastic contaminated soil. ENVIRONMENTAL RESEARCH 2024; 240:117488. [PMID: 37907163 DOI: 10.1016/j.envres.2023.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Biochar amendment has significant benefits in removing antibiotic resistance genes (ARGs) in the soil. Nevertheless, there is little information on ARGs removal in microplastic contaminated soil. Herein, a 42-day soil microcosm experiment were carried out to study how two coconut shell biochars (bulk- and nano-size) eliminate soil ARGs with/without microplastic presence. The results showed that microplastic increased significantly the numbers and abundances of ARGs in soil at 14d of cultivation. And, two biochars amendment effectively inhibited soil ARGs spread whether or not microplastic was present, especially for nano-biochar which had more effective removal compared to bulk-biochar. However, microplastic weakened soil ARGs removal after applying same biochar. Two biochars removed ARGs through decreasing horizontal gene transfer (HGT) of ARGs, potential host-bacteria abundances, some bacteria crowding the eco-niche of hosts and promoting soil properties. The adverse effect of microplastic on ARGs removal was mainly caused by weakening mobile genetic elements (MGEs) removal, and by changing soil properties. Structural equation modeling (SEM) analysis indicated that biochar's effect on ARGs profile was changed by its size and microplastic presence through altering MGEs abundances. These results highlight that biochar amendment is still an effective method for ARGs removal in microplastic contaminated soil.
Collapse
Affiliation(s)
- Xiangmiao Su
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fanghan Qian
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education) / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Kenneth MJ, Koner S, Hsu GJ, Chen JS, Hsu BM. A review on the effects of discharging conventionally treated livestock waste to the environmental resistome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122643. [PMID: 37775024 DOI: 10.1016/j.envpol.2023.122643] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Globally, animal production has developed rapidly as a consequence of the ongoing population growth, to support food security. This has consequently led to an extensive use of antibiotics to promote growth and prevent diseases in animals. However, most antibiotics are not fully metabolized by these animals, leading to their excretion within urine and faeces, thus making these wastes a major reservoir of antibiotics residues, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the environment. Farmers normally depend on conventional treatment methods to mitigate the environmental impact of animal waste; however, these methods are not fully efficient to remove the environmental resistome. The present study reviewed the variability of residual antibiotics, ARB, as well as ARGs in the conventionally treated waste and assessed how discharging it could increase resistome in the receiving environments. Wherein, considering the efficiency and environmental safety, an addition of pre-treatments steps with these conventional treatment methods could enhance the removal of antibiotic resistance agents from livestock waste.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
6
|
Yuan X, Cui K, Chen Y, Zhang Y, Wu S, Xie X, Liu T, Yao H. Microbial community and gene dynamics response to high concentrations of gadolinium and sulfamethoxazole in biological nitrogen removal system. CHEMOSPHERE 2023; 342:140218. [PMID: 37734503 DOI: 10.1016/j.chemosphere.2023.140218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
The impact of high antibiotic and heavy metal pollution levels on biological nitrogen removal in wastewater treatment plants (WWTPs) remains poorly understood, posing a global concern regarding the issue spread of antibiotic resistance induced by these contaminants. Herein, we investigated the effects of gadolinium (Gd) and sulfamethoxazole (SMX), commonly found in medical wastewater, on biological nitrogen removal systems and microbial characteristics, and the fate of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs). Our findings indicated that high SMX and Gd(III) concentrations adversely affected nitrification and denitrification, with Gd(III) exerting a strong inhibitory effect on microbial activity. Metagenomic analysis revealed that high SMX and Gd(III) concentrations could reduce microbial diversity, with Thauera and Pseudomonas emerging as dominant genera across all samples. While the relative abundance of most ARGs decreased under single Gd(III) stress, MRGs increased, and nitrification functional genes were inhibited. Conversely, combined SMX and Gd(III) pollution increased the relative abundance of intl1. Correlation analysis revealed that most genera could host ARGs and MRGs, indicating co-selection and competition between these resistance genes. However, most denitrifying functional genes exhibited a positive correlation with MRGs. Overall, our study provides novel insights into the impact of high concentrations of antibiotics and heavy metal pollution in WWTPs, and laying the groundwork for the spread and proliferation of resistance genes under combined SMX and Gd pollution.
Collapse
Affiliation(s)
- Xinrui Yuan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yao Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shiyang Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xianjin Xie
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tong Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hongjia Yao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
7
|
Pereira AR, de Ávila Barbosa Fonseca L, Paranhos AGDO, da Cunha CCRF, de Aquino SF, de Queiroz Silva S. Role of a typical swine liquid manure treatment plant in reducing elements of antibiotic resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91803-91817. [PMID: 37477815 DOI: 10.1007/s11356-023-28823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Biological treatment of swine liquid manure may be a favorable environment for the enrichment of bacteria carrying antibiotic resistance genes (ARGs), raising the alert about this public health problem. The present work sought to investigate the performance of a swine wastewater treatment plant (SWWTP), composed of a covered lagoon biodigester (CLB) followed by three facultative ponds, in the removal of usual pollutants, antibiotics, ARGs (blaTEM, ermB, qnrB, sul1, and tetA), and intI1. The SWWTP promoted a 70% of organic matter removal, mainly by the digester unit. The facultative ponds stood out in the solids' retention carried from the anaerobic stage and contributed to ammonia volatilization. The detected antibiotic in the raw wastewater was norfloxacin (< 0.79 to 60.55 μg L-1), and the SWWTP seems to equalize peaks of norfloxacin variation probably due to sludge adsorption. CLB reduced the absolute abundance of ARGs by up to 2.5 log, while the facultative stage does not seem to improve the quality of the final effluent in terms of resistance elements. Considering the relative abundances, the reduction rates of total and ARG-carrying bacteria appear to be similar. Finally, correlation tests also revealed that organic matter and solids control in liquid manure treatment systems could help reduce the spread of ARGs after the waste final disposal.
Collapse
Affiliation(s)
- Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | | | | | | | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| |
Collapse
|
8
|
Zalewska M, Błażejewska A, Czapko A, Popowska M. Pig manure treatment strategies for mitigating the spread of antibiotic resistance. Sci Rep 2023; 13:11999. [PMID: 37491438 PMCID: PMC10368742 DOI: 10.1038/s41598-023-39204-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023] Open
Abstract
Due to the risk of pathogenic antibiotic-resistant bacteria and their antibiotic-resistance genes transfer from livestock feces to the soil and cultivated crops, it is imperative to find effective on-farm manure treatments to minimize that hazardous potential. An introduced worldwide policy of sustainable development, focus on ecological agricultural production, and the circular economy aimed at reducing the use of artificial fertilizers; therefore, such treatment methods should also maximize the fertilization value of animal manure. The two strategies for processing pig manure are proposed in this study-storage and composting. The present study examines the changes in the physicochemical properties of treated manure, in the microbiome, and in the resistome, compared to raw manure. This is the first such comprehensive analysis performed on the same batch of manure. Our results suggest that while none of the processes eliminates the environmental risk, composting results in a faster and more pronounced reduction of mobile genetic elements harboring antibiotic resistance genes, including those responsible for multi-drug resistance. Overall, the composting process can be an efficient strategy for mitigating the spread of antibiotic resistance in the environment and reducing the risk of its transfer to crops and the food chain while providing essential fertilizer ingredients.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Czapko
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
9
|
Sheriff I, Yusoff MS, Manan TSBA, Koroma M. Microplastics in manure: Sources, analytical methods, toxicodynamic, and toxicokinetic endpoints in livestock and poultry. ENVIRONMENTAL ADVANCES 2023; 12:100372. [DOI: 10.1016/j.envadv.2023.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Zhao Z, Yu C, Yang C, Gao B, Jiménez N, Wang C, Li F, Ao Y, Zheng L, Huang F, Tomberlin JK, Ren Z, Yu Z, Zhang J, Cai M. Mitigation of antibiotic resistome in swine manure by black soldier fly larval conversion combined with composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163065. [PMID: 36966826 DOI: 10.1016/j.scitotenv.2023.163065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The increasing prevalence of antibiotic resistance genes (ARGs) in animal manure has attracted considerable attention because of their potential contribution to the development of multidrug resistance worldwide. Insect technology may be a promising alternative for the rapid attenuation of ARGs in manure; however, the underlying mechanism remains unclear. This study aimed to evaluate the effects of black soldier fly (BSF, Hermetia illucens [L.]) larvae conversion combined with composting on ARGs dynamics in swine manure and to uncover the mechanisms through metagenomic analysis. Compared to natural composting (i.e. without BSF), BSFL conversion combined with composting reduced the absolute abundance of ARGs by 93.2 % within 28 days. The rapid degradation of antibiotics and nutrient reformulation during BSFL conversion combined with composting indirectly altered manure bacterial communities, resulting in a lower abundance and richness of ARGs. The number of main antibiotic-resistant bacteria (e.g., Prevotella, Ruminococcus) decreased by 74.9 %, while their potential antagonistic bacteria (e.g., Bacillus, Pseudomonas) increased by 128.7 %. The number of antibiotic-resistant pathogenic bacteria (e.g., Selenomonas, Paenalcaligenes) decreased by 88.3 %, and the average number of ARGs carried by each human pathogenic bacterial genus declined by 55.8 %. BSF larvae gut microbiota (e.g., Clostridium butyricum, C. bornimense) could help reduce the risk of multidrug-resistant pathogens. These results provide insight into a novel approach to mitigate multidrug resistance from the animal industry in the environment by using insect technology combined with composting, in particular in light of the global "One Health" requirements.
Collapse
Affiliation(s)
- Zhengzheng Zhao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chongrui Yang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Bingqi Gao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Núria Jiménez
- Department of Chemical Engineering, Vilanova i la Geltrú School of Engineering (EPSEVG), Universitat Politècnica de Catalunya · BarcelonaTech, Vilanova i la Geltrú 08800, Spain
| | - Chen Wang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Fang Li
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Yue Ao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Feng Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | | | - Zhuqing Ren
- Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China; Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China.
| |
Collapse
|
11
|
Anedda E, Farrell ML, Morris D, Burgess CM. Evaluating the impact of heavy metals on antimicrobial resistance in the primary food production environment: A scoping review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121035. [PMID: 36623784 DOI: 10.1016/j.envpol.2023.121035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Heavy metals are naturally occurring environmental compounds, which can influence antimicrobial resistance (AMR) dissemination. However, there is limited information on how heavy metals may act as a selective pressure on AMR in the primary food production environment. This review aims to examine the literature on this topic in order to identify knowledge gaps. A total of 73 studies, which met pre-established criteria, were included. These investigations were undertaken between 2008 and 2021, with a significant increase in the last three years. The majority of studies included were undertaken in China. Soil, water and manure were the most common samples analysed, and the sampling locations varied from areas with a natural presence of heavy metals, areas intentionally amended with heavy metals or manure, to areas close to industrial activity or mines. Fifty-four per cent of the investigations focused on the analysis of four or more heavy metals, and copper and zinc were the metals most frequently analysed (n = 59, n = 49, respectively). The findings of this review highlight a link between heavy metals and AMR in the primary food production environment. Heavy metals impacted the abundance and dissemination of mobile genetic elements (MGEs) and antimicrobial resistance genes (ARGs), with MGEs also observed as playing a key role in the spread of ARGs and metal resistance genes (MRGs). Harmonization of methodologies used in future studies would increase the opportunity for comparison between studies. Further research is also required to broaden the availability of data at a global level.
Collapse
Affiliation(s)
- Elena Anedda
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Food Safety Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland.
| | - Maeve Louise Farrell
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Ireland.
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Ireland.
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland.
| |
Collapse
|
12
|
Zhou L, Li S, Li F. Damage and elimination of soil and water antibiotic and heavy metal pollution caused by livestock husbandry. ENVIRONMENTAL RESEARCH 2022; 215:114188. [PMID: 36030917 DOI: 10.1016/j.envres.2022.114188] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The combination of antibiotics and heavy metals (HMs) increases the toxicity range of influence and requires additional research attention. This article analyzed the toxicity mechanisms and damage of combined pollution. Cross-resistance, co-resistance, and co-regulation are the primary toxicity mechanisms. Combined pollution increases antibiotic resistance genes (ARGs), increases bacterial resistance, and promotes the horizontal transfer of ARGs, affecting the types and distribution of microorganisms. The hazard of combined pollution varies with concentration and composition. The physicochemical and biological technologies for eliminating combined pollution are primarily elaborated. Adsorption, photocatalytic degradation, and microbial treatment show high removal rates and good recyclability, indicating good application potential. This review provides a basis and reference for the further study the elimination of combined antibiotic and HM pollution.
Collapse
Affiliation(s)
- Lu Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shengnan Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
13
|
Xu C, Kong L, Gao H, Cheng X, Wang X. A Review of Current Bacterial Resistance to Antibiotics in Food Animals. Front Microbiol 2022; 13:822689. [PMID: 35633728 PMCID: PMC9133924 DOI: 10.3389/fmicb.2022.822689] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
The overuse of antibiotics in food animals has led to the development of bacterial resistance and the widespread of resistant bacteria in the world. Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in food animals are currently considered emerging contaminants, which are a serious threat to public health globally. The current situation of ARB and ARGs from food animal farms, manure, and the wastewater was firstly covered in this review. Potential risks to public health were also highlighted, as well as strategies (including novel technologies, alternatives, and administration) to fight against bacterial resistance. This review can provide an avenue for further research, development, and application of novel antibacterial agents to reduce the adverse effects of antibiotic resistance in food animal farms.
Collapse
Affiliation(s)
- Chunming Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Lingqiang Kong
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hanfang Gao
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Lu XM, Chen YL. Varying characteristics and driving mechanisms of antibiotic resistance genes in farmland soil amended with high-density polyethylene microplastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128196. [PMID: 35030489 DOI: 10.1016/j.jhazmat.2021.128196] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The differential effects of microplastics and phthalates released from microplastics on antibiotic resistance genes in soil remain unknown. This study aims to analyze the varying characteristics and driving mechanisms of antibiotic resistance genes in soils amended with high-density polyethylene microplastics (with and without phthalates) through a 60-day microcosm experiment. The results indicate that the amended high-density polyethylene microplastics (containing phthalates) enhanced the abundance of antibiotic resistance genes in the soil, a phenomenon that markedly increased with the amendment period. Nevertheless, the addition of high-density polyethylene microplastics (without phthalates) mitigated the abundance of antibiotic resistance genes, which was less significant with increasing amendment period. Furthermore, addition of high-density polyethylene microplastics altered the soil properties, especially porosity. The phthalates released from high-density polyethylene microplastics and the changes in the soil properties transformed soil bacterial communities, resulting in increased abundance of bacterial hosts harboring antibiotic resistance genes (Calditrichaeota, Candidate division CPR1, Candidatus Delongbacteria, Candidatus Kapabacteria, Candidatus Spechtbacteria, Candidatus Wildermuthbacteria, and Ignavibacteriae), thereby enhancing the abundance of antibiotic resistance genes. These findings suggest that compared to microplastics, the phthalates released from microplastics considerably affect the antibiotic resistance genes in soils, thereby promoting the propagation of antibiotic resistance genes in agricultural environments.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China.
| | - Yi-Lan Chen
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China
| |
Collapse
|
15
|
Zhang T, Wu X, Shaheen SM, Abdelrahman H, Ali EF, Bolan NS, Ok YS, Li G, Tsang DCW, Rinklebe J. Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127906. [PMID: 34891020 DOI: 10.1016/j.jhazmat.2021.127906] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Improving the recovery of organic matter and phosphorus (P) from hazardous biowastes such as swine manure using acidic substrates (ASs) in conjunction with aerobic composting is of great interest. This work aimed to investigate the effects of ASs on the humification and/or P migration as well as on microbial succession during the swine manure composting, employing multivariate and multiscale approaches. Adding ASs, derived from wood vinegar and humic acid, increased the degree of humification and thermal stability of the compost. The 31P nuclear magnetic resonance spectroscopy and X-ray absorption near-edge structure analyses demonstrated compost P was in the form of struvite crystals, Ca/Al-P phases, and Poly-P (all inorganic P species) as well as inositol hexakisphosphate and Mono-P (organophosphorus species). However, the efficiency of P recovery could be improved by generating more struvite by adding the ASs. The flows among nutrient pools resulted from the diversity in the dominant microbial communities in different composting phases after introducing the ASs and appearance of Bacillus spp. in all phases. These results demonstrate the potential value of ASs for regulating and/or improving nutrients flow during the composting of hazardous biowastes for producing higher quality compost, which may maximize their beneficial benefits and applications.
Collapse
Affiliation(s)
- Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Xiaosha Wu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
16
|
Wu Y, Wen Q, Chen Z, Fu Q, Bao H. Response of antibiotic resistance to the co-exposure of sulfamethoxazole and copper during swine manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150086. [PMID: 34537705 DOI: 10.1016/j.scitotenv.2021.150086] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals driven co-selection of antibiotic resistance in soil and water bodies has been widely concerned, but the response of antibiotic resistance to co-existence of antibiotics and heavy metals in composting system is still unknown. Commonly used sulfamethoxazole and copper were individually and jointly added into four reactors to explore their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), heavy metal resistance genes (MRGs) and bacterial community structure. The abundance of total ARGs and MGEs were notably decreased by 68.64%-84.95% and 91.27-97.38%, respectively, after the composting. Individual addition of sulfamethoxazole, individual addition of copper, simultaneously addition of sulfamethoxazole and copper increased the abundance of ARGs and MGEs throughout the composting period. Co-exposure of sulfamethoxazole and copper elevated the total abundance of ARGs by 1.17-1.51 times by the end of the composting compared to individual addition of sulfamethoxazole or copper. Network analysis indicated that the shifts in potential host bacteria determined the ARGs variation. Additionally, MGEs and MRGs had significant effects on ARGs, revealing that horizontal gene transfer and heavy metals induced co-resistance could promote ARGs dissemination.
Collapse
Affiliation(s)
- Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
17
|
Feng T, Su W, Zhu J, Yang J, Wang Y, Zhou R, Yu Q, Li H. Corpse decomposition increases the diversity and abundance of antibiotic resistance genes in different soil types in a fish model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117560. [PMID: 34438490 DOI: 10.1016/j.envpol.2021.117560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/05/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
As a common natural phenomenon, corpse decomposition may lead to serious environmental pollution such as nitrogen pollution. However, less is known about antibiotic resistance genes (ARGs), an emerging contaminant, during corpse degradation. Here, ARGs and microbiome in three soil types (black, red and yellow soil) have been investigated between experimental and control groups based on next-generation sequencing and high-throughput quantitative PCR techniques. We found that the absolute abundance of total ARGs and mobile genetic elements (MGEs) in the experimental groups were respectively enriched 536.96 and 240.60 times in different soil types, and the number of ARGs in experimental groups was 7-25 more than that in control groups. For experimental groups, the distribution of ARGs was distinct in different soil types, but sulfonamide resistance genes were always enriched. Corpse decomposition was a primary determinant for ARGs profiles. Microbiome, NH4+ concentrates and pH also significantly affected ARGs profiles. Nevertheless, soil types had few effects on ARGs. For soil microbiome, some genera were elevated in experimental groups such as the Ignatzschineria and Myroides. The alpha diversity is decreased in experimental groups and microbial community structures are different between treatments. Additionally, the Escherichia and Neisseria were potential pathogens elevated in experimental groups. Network analysis indicated that most of ARGs like sulfonamide and multidrug resistance genes presented strong positively correlations with NH4+ concentrates and pH, and some genera like Ignatzschineria and Dysgonomonas were positively correlated with several ARGs such as aminoglycoside and sulfonamide resistance genes. Our study reveals a law of ARGs' enrichment markedly during corpse decomposing in different soil types, and these ARGs contaminant maintaining in environment may pose a potential threat to environmental safety and human health.
Collapse
Affiliation(s)
- Tianshu Feng
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jianxiao Zhu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral, Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Yijie Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Rui Zhou
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
18
|
Lin H, Sun W, Yu Y, Ding Y, Yang Y, Zhang Z, Ma J. Simultaneous reductions in antibiotics and heavy metal pollution during manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147830. [PMID: 34134373 DOI: 10.1016/j.scitotenv.2021.147830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The co-existence of antibiotics and heavy metal (HM) is common in manure. However, existing strategies for improving antibiotic dissipation or HM immobilization during composting rarely consider their combined pollution. In this study, we used agricultural lime and a newly designed attapulgite-activated carbon composite (AACC) to enhance the stabilization of HMs in a pilot-scale swine manure composting system and assessed the effectiveness of these materials for removing antibiotic residues. Results indicated that the application of either lime or AACC simultaneously enhanced HM immobilization and antibiotic degradation. In particular, the addition of AACC reduced the enrichment of Cr, Cd, Pb, and As during composting and decreased the half-lives of the antibiotics from 10.7 days to 6.3 days, which were more effectively than lime. The physicochemical and microbiological responses to different additives were subsequently studied to understand the mechanisms underlying the fates of HMs and antibiotics. High HM stress in manure inhibited antibiotic dissipation, but metal immobilization alleviated this effect. The AACC accelerated HM immobilization by surface adsorption and metal precipitation, and this enhancement strengthened during the late composting stage due to an increase in pH, whereas lime exhibited a short-term effect. Moreover, the AACC addition enhanced the contribution of bacteria to changes in antibiotic concentrations, while the increase in pile temperature could be a major factor that contributed to the acceleration of antibiotic degradation after the addition of lime. Characterization of the final compost further showed that AACC-treated compost had the lowest residual concentrations of HMs and antibiotics, higher mortality of ascarid egg, improved nitrogen conversation, and reduced phytotoxicity. Thus, co-composting of swine manure with AACC is a promising approach for producing safer compost for use in agriculture.
Collapse
Affiliation(s)
- Hui Lin
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Wanchun Sun
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yijun Yu
- Zhejiang Cultivated Land Quality and Fertilizer Management Station, Hangzhou 310020, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Junwei Ma
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
19
|
Pereira AR, Paranhos AGDO, de Aquino SF, Silva SDQ. Distribution of genetic elements associated with antibiotic resistance in treated and untreated animal husbandry waste and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26380-26403. [PMID: 33835340 DOI: 10.1007/s11356-021-13784-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Animal breeding for meat production based on swine, cattle, poultry, and aquaculture is an activity that generates several impacts on the environment, among them the spread of antibiotic resistance. There is a worldwide concern related to the massive use of antibiotics, which causes selective pressure on the microbial community, triggering bacteria that contain "antibiotic resistance genes." According to the survey here presented, antibiotic resistance-related genes such as tetracyclines (tet), erythromycin (erm), and sulfonamides (sul), as well as the genetic mobile element interferon (int), are the most reported genetic elements in qualitative and quantitative studies of swine, cattle, poultry, and aquaculture manure/wastewater. It has been observed that biological treatments based on waste composting and anaerobic digestion are effective in ARG removal, particularly for tet, bla, erm, and qnr (quinolone) genes. On the other hand, sul and intI genes were more persistent in such treatments. Tertiary treatments, such advanced oxidative processes, are suitable strategies to improve ARG reduction. In general temperature, hydraulic retention time, and penetration of sunlight are the main operational parameters for ARG reduction in treatments applied to animal waste, and therefore attention should be addressed to optimize their efficacy regarding ARG removal. Despite being reduced, the presence of ARG in treated effluents and in biosolids indicates that there is a potential risk of antibiotic resistance spread in nature, especially through the release of treated livestock waste into the environment.
Collapse
Affiliation(s)
- Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Aline Gomes de Oliveira Paranhos
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Sérgio Francisco de Aquino
- Department of Chemistry, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil.
| |
Collapse
|
20
|
Lin Z, Yuan T, Zhou L, Cheng S, Qu X, Lu P, Feng Q. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1741-1758. [PMID: 33123928 DOI: 10.1007/s10653-020-00759-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance is a great concern, which leads to global public health risks and ecological and environmental risks. The presence of antibiotic-resistant genes and antibiotic-resistant bacteria in the environment exacerbates the risk of spreading antibiotic resistance. Among them, horizontal gene transfer is an important mode in the spread of antibiotic resistance genes, and it is one of the reasons that the antibiotic resistance pollution has become increasingly serious. At the same time, free antibiotic resistance genes and resistance gene host bacterial also exist in the natural environment. They can not only affect horizontal gene transfer, but can also migrate and aggregate among environmental media in many ways and then continue to affect the proliferate and transfer of antibiotic resistance genes. All this shows the seriousness of antibiotic resistance pollution. Therefore, in this review, we reveal the sensitive factors affecting the distribution and spread of antibiotic resistance through three aspects: the influencing factors of horizontal gene transfer, the host bacteria of resistance genes and the migration of antibiotic resistance between environmental media. This review reveals the huge role of environmental migration in the spread of antibiotic resistance, and the environmental behavior of antibiotic resistance deserves wider attention. Meanwhile, extracellular antibiotic resistance genes and intracellular antibiotic resistance genes play different roles, so they should be studied separately.
Collapse
Affiliation(s)
- Zibo Lin
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Tao Yuan
- Department of Construction Equipment and Municipal Engineering, Jiangsu Vocational Institute of Architectural Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
- Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology, Xuzhou, 221116, China
| | - Lai Zhou
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Sen Cheng
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Xu Qu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Ping Lu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China.
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China.
| | - Qiyan Feng
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| |
Collapse
|
21
|
Sardar MF, Zhu C, Geng B, Huang Y, Abbasi B, Zhang Z, Song T, Li H. Enhanced control of sulfonamide resistance genes and host bacteria during thermophilic aerobic composting of cow manure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116587. [PMID: 33582626 DOI: 10.1016/j.envpol.2021.116587] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/24/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Traditional composting has already shown a certain effect in eliminating antibiotic residues, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs). It is worth noting that the rebounding of ARGs and the succession of the bacterial community during conventional aerobic composting are still serious threats. Considering the probable risk, improved and adaptable technologies are urgently needed to control antibiotic resistance efficiently. This study monitored how thermophilic aerobic composting affected the ARGs, as well as the bacterial diversity during the composting of cow manure spiked with sulfamethoxazole (SMX) at different concentrations. Results showed that the degradation of SMX was enhanced during thermophilic aerobic composting (control > SMX25 > SMX50 > SMX100) and was no longer detected after 20 days of composting. High temperature or heat significantly stimulated the rebounding of certain genes. After 35 days, the abundance of detected genes (sul2, sulA, dfrA7, and dfrA1) significantly decreased (p < 0.05) in control and antibiotic-spiked treatments, except for sul1. The addition of three concentrations of SMX elicited a sharp effect on bacterial diversity, and microbial structure in SMX25 led to significant differences with others (p < 0.05). The network analysis revealed more rigorous interactions among ARGs and abundant genera, suggesting that the host of ARGs potentially increased at low concentrations of SMX. Especially, genera g_norank_f__Beggiatoaceae, Ruminiclostridium, Caldicoprobacter, g_norank_o_MBA03, Hydrogenispora, and Ruminiclostridium_1 were major potential hosts for sul1. In conclusion, the rebounding of ARGs could be intermitted partially, and more efficient control of antibiotic resistance could be achieved in the thermophilic composting compared to conventional methods.
Collapse
Affiliation(s)
- Muhammad Fahad Sardar
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Changxiong Zhu
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Bing Geng
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yali Huang
- College of Environment Science and Engineering, Hebei University of Science and Technology, Hebei, 050000, PR China
| | - Bilawal Abbasi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhiguo Zhang
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Tingting Song
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Hongna Li
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
22
|
Luo T, Wang Y, Pandey P. The removal of moisture and antibiotic resistance genes in dairy manure by microwave treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6675-6683. [PMID: 33006099 DOI: 10.1007/s11356-020-10986-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
To characterize the drying of dairy manure during microwave (MW) heating, and to determine the impacts of microwave radiation on reductions of antibiotic resistance genes (ARGs), this study investigated on understanding the effects of microwave heating on solid streams of flushed dairy manure. A series of experiments were performed to determine the rate of drying, moisture removal percentages, change in solids, and the level of ARGs. Manure was exposed to microwave radiation for 30-300 s at a frequency of 2450 MHz. The results showed moisture removal rate (U) up to 0.63-g water per minute per gram of dairy manure. During MW treatment, volatile solid (VS) content was relatively stable. The MW treatment resulted in reduction of ARGs such as sulII, intI1, and tnpA. The ARG concentrations (sulII, intI1, and tnpA) were reduced by 2 orders of magnitude in less than 1 min of microwave heating. The preliminary results of this study showed that MW treatment can be a viable option for drying of dairy manure and reducing ARGs in manure.
Collapse
Affiliation(s)
- Tao Luo
- Biogas institute of ministry of agriculture and rural affairs, Chengdu, 610041, Sichuan, China
- Department of population health and reproduction, Veterinary medicine school, University of California, Davis, CA, 95616, USA
| | - Yi Wang
- Department of population health and reproduction, Veterinary medicine school, University of California, Davis, CA, 95616, USA
| | - Pramod Pandey
- Department of population health and reproduction, Veterinary medicine school, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
23
|
Liu Y, Zheng L, Cai Q, Xu Y, Xie Z, Liu J, Ning X. Simultaneous reduction of antibiotics and antibiotic resistance genes in pig manure using a composting process with a novel microbial agent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111724. [PMID: 33396055 DOI: 10.1016/j.ecoenv.2020.111724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
In recent years, in order to promote animal growth and reduce the risk of disease, a variety of antibiotics are frequently added to the animal feed of livestock and poultry. However, these antibiotics can not be fully digested by animals and most of them are excreted with feces, consequently causing the enrichment of antibiotic resistance genes (ARGs) and huge environmental risks. Nowadays, composting is a better option to solve these problems. Accordingly, this study explored the effects of co-composting swine manure with different inoculants dominated by Phanerochaete chrysosporium (p), Aspergillus niger (a), and Bacillus licheniformis (b) on the simultaneous removal of multiple antibiotics and resistance genes and evolution of the bacterial community. The results showed that the highest removal extent of tetracycline and oxytetracycline occurred in pile D (p:b:a=1:5:5, biomass) reaching 89.2% and 87.8%, respectively, while the highest removal extent of doxycycline and enrofloxacin occurred in pile A (p:b:a=1:0:0, biomass) reaching 98.6% and 89%, respectively. Compared with the levels in pile B (control check), in pile D, ARGs, except those for sulfonamides, decreased by 1.059 × 10-3-6.68 × 10-2 gene copies/16S rRNA copies. Inoculation with p alone effectively reduced intI1 and intI2. Canonical correspondence analysis (CCA) that microbial community structure evolution had a greater influence on ARGs than environmental factors. In summary, this study provided a feasible way to efficiently remove the antibiotics and antibiotic resistance genes in pig manure.
Collapse
Affiliation(s)
- Yanting Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zheng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qiujie Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhifan Xie
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyong Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xunan Ning
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
24
|
Subirats J, Murray R, Scott A, Lau CHF, Topp E. Composting of chicken litter from commercial broiler farms reduces the abundance of viable enteric bacteria, Firmicutes, and selected antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141113. [PMID: 32768779 DOI: 10.1016/j.scitotenv.2020.141113] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
We examined the ability of composting to remove ARGs and enteric bacteria in litter obtained from broiler chickens fed with a diet supplemented with Bacitracin methylene disalicylate (BDM) (conventional chicken litter), or an antibiotic-free diet (raised without antibiotic (RWA) chicken litter). This was done by evaluating the litter before and after composting for the abundance of ten gene targets associated with antibiotic resistance or horizontal gene transfer, the composition of the bacterial communities, and the abundance of viable enteric bacteria. The abundance of gene targets was determined by qPCR and the microbial community composition of chicken litter determined by 16S rRNA gene amplicon sequencing. Enteric bacteria were enumerated by viable plate count. A majority of the gene targets were more abundant in conventional than in RWA litter. In both litter types, the absolute abundance of all of the target genes decreased after composting except sul1, intI1, incW and erm(F) that remained stable. Composting significantly reduced the abundance of enteric bacteria, including those carrying antibiotic resistance. The major difference in bacterial community composition between conventional and RWA litter was due to members affiliated to the genus Pseudomonas, which were 28% more abundant in conventional than in RWA litter. Composting favoured the presence of thermophilic bacteria, such as those affiliated with the genus Truepera, but decreased the abundance of those bacterial genera associated with cold-adapted species, such as Carnobacterium, Psychrobacter and Oceanisphaera. The present study shows that chicken litter from broilers fed with a diet supplemented with antibiotic has an increased abundance of some ARGs, even after composting. However, we can conclude that fertilization with composted litter represents a reduced risk of transmission of antibiotic resistance genes and enteric bacteria of poultry origin to soil and crops than will fertilization with raw litter.
Collapse
Affiliation(s)
- Jessica Subirats
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Roger Murray
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Andrew Scott
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Calvin Ho-Fung Lau
- Canadian Food Inspection Agency, 960 Carling Avenue, Ottawa, Ontario, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
25
|
Aryal N, Wood J, Rijal I, Deng D, Jha MK, Ofori-Boadu A. Fate of environmental pollutants: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1587-1594. [PMID: 32671926 DOI: 10.1002/wer.1404] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
A review of the literature published in 2019 on topics associated with the fate of environmental pollutants is presented. Environmental pollutants covered include pharmaceuticals, antibiotic-resistant bacteria and genes, pesticides and veterinary medicines, personal care products and emerging pollutants, PFAS, microplastics, nanomaterials, heavy metals and radionuclides, nutrients, pathogens and indicator organisms, and oil and hydrocarbons. For each pollutant, the occurrence in the environment and/or their fate in engineered as well as natural systems in matrices including water, soil, wastewater, stormwater, runoff, and/or manure is presented based on the published literature. The review includes current developments in understanding pollutants in natural and engineered systems, and relevant physico-chemical processes, as well as biological processes.
Collapse
Affiliation(s)
- Niroj Aryal
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, North Carolina
| | - Jonae Wood
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, North Carolina
| | - Ishara Rijal
- Agricultural Research Program, College of Agriculture and Environmental Sciences, North Carolina A&T State University, Greensboro, North Carolina
| | - Dongyang Deng
- Department of Built Environment, North Carolina A&T State University, Greensboro, North Carolina
| | - Manoj K Jha
- Department of Civil, Architectural and Environmental Engineering, North Carolina A&T State University, Greensboro, North Carolina
| | - Andrea Ofori-Boadu
- Department of Built Environment, North Carolina A&T State University, Greensboro, North Carolina
| |
Collapse
|
26
|
Chao H, Sun M, Ye M, Zheng X, Hu F. World within world: Intestinal bacteria combining physiological parameters to investigate the response of Metaphire guillelmi to tetracycline stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114174. [PMID: 32066061 DOI: 10.1016/j.envpol.2020.114174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Due to the abusive usage of antibiotics in animal husbandry, a large amount of residual antibiotics has been released into the environment, therein posing great threat against both environment security and public health. Therefore, it is of great significance to investigate the toxicity of antibiotics on the widely-applied bioindicator-earthworm. In this work, the physiological parameters and the intestinal bacteria community of Metaphire guillelmi were monitored simultaneously to evaluate their sensitivity to the tetracycline (TC) exposure. As expected, the antioxidant enzyme activity and coelomocyte apoptosis acted fairly well as biomarkers for the TC toxicity. In contrast, the intestinal bacteria of Metaphire guillelmi responded varyingly to different TC doses. When TC concentration increased from 0 to 35.7 μg cm-2, the percentage of the Proteobacteria phylum declined significantly from 85.5% to 34.4%, while the proportions of the Firmicutes, Planctomycetes and Atinomycete phyla clearly increased (p < 0.05). Meanwhile, the levels of TC resistance genes tetA, tetC, and tetW increased with the increasing TC concentration, in contrast to the declined abundance in denitrifying genes nirS and nosZ (p < 0.05). By analyzing the correlation between the antioxidant enzyme activity and the dominant intestinal bacteria in the worm gut, it is interesting to found that the four dominant bacteria genera Mesorhizobium, Aliihoeflea, Romboutsia, and Nitrospira are the promising bioindicator of TC stress due to their sensitive response. This work shed novel light on evaluating the ecotoxicological risks posed by residual TC in environment by using a combination of physiological parameters and intestinal bacterial activity in earthworms.
Collapse
Affiliation(s)
- Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoxuan Zheng
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Fan NS, Bai YH, Chen QQ, Shen YY, Huang BC, Jin RC. Deciphering the toxic effects of antibiotics on denitrification: Process performance, microbial community and antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110375. [PMID: 32250829 DOI: 10.1016/j.jenvman.2020.110375] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
The extensive application of antibiotics, and the occurrence and spread of antibiotic resistance genes (ARGs) shade health risks to human and animal. The long-term effects of sulfamethoxazole (SMX) and tetracycline (TC) on denitrification process were evaluated in this study, with the focus on nitrogen removal performance, microbial community and ARGs. Results showed that low-concentration SMX and TC (<0.2 mg L-1) initially caused a deterioration in nitrogen removal performance, while higher concentrations (0.4-20 mg L-1) of both antibiotics had no further inhibitory influences. The abundances of ARGs in both systems generally increased during the whole period, and most of them had significant correlations with intI1, especially efflux-pump genes. Castellaniella, which was the dominant genus under antibiotic pressure, might be potential resistant bacteria. These findings provide an insight into the toxic effects of different antibiotics on denitrification process, and guides future efforts to control antibiotics pollution in ecosystems.
Collapse
Affiliation(s)
- Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu-Hui Bai
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qian-Qian Chen
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang-Yang Shen
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
28
|
Guo HG, Chen QL, Hu HW, He JZ. Fate of antibiotic resistance genes during high-solid anaerobic co-digestion of pig manure with lignite. BIORESOURCE TECHNOLOGY 2020; 303:122906. [PMID: 32028218 DOI: 10.1016/j.biortech.2020.122906] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Lignite could be used to promote methane production during high-solid anaerobic co-digestion (HS-AcoD) of pig manure, however, the effects of lignite amendment on the fate of ARGs during HS-AcoD are unknown. Here, we explored the influence of lignite (0%, 8%, 16%, 32%, and 64%) on the fate of ARGs during HS-AcoD of pig manure. The results showed that 16% lignite reduced the absolute abundance of ARGs by 28.71% compared with the 0% lignite treatment. Variation partitioning analysis suggested the combined effect of microbial community, mobile genetic elements (MGEs) and environmental factors was the major driver shaping the pattern of ARGs. The potential hosts of ARGs were Bifidobacterium, Lactobacillus, Tissierella and Streptococcus. Structural equation models analysis suggested lignite indirectly impacted the pattern of ARGs by significantly reducing the abundance of microbial community and MGEs. These findings give an insight into the mechanistic understanding of the lignite influence on the reduction of ARGs during HS-AcoD.
Collapse
Affiliation(s)
- Hai-Gang Guo
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia; Huayu Agricultural Science and Technology Co., LTD, Handan 057153, China
| | - Qing-Lin Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
29
|
Zhang M, He LY, Liu YS, Zhao JL, Zhang JN, Chen J, Zhang QQ, Ying GG. Variation of antibiotic resistome during commercial livestock manure composting. ENVIRONMENT INTERNATIONAL 2020; 136:105458. [PMID: 31926439 DOI: 10.1016/j.envint.2020.105458] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 05/05/2023]
Abstract
Composting has been widely used to turn livestock manure into organic fertilizer. However, livestock manure contains various contaminants including antibiotics and antibiotic resistance genes (ARGs). Here we investigated the variation of antibiotic resistome and its influencing factors during a commercial livestock manure composting. The results showed that composting could effectively reduce the relative abundance of ARGs and mobile genic elements (MGEs). As the dominant phylum in the composting samples, the key potential bacterial host of ARGs were Actinobacteria such as Leucobacter, Mycobacterium and Thermomonosporaceae unclassified. Meanwhile, Legionella pneumophila, Staphylococcus saprophyticus, Haemophilus ducreyi and Siccibacter turicensis may be the key potential pathogenic host of ARGs because of their co-occurrence with ARG subtypes. Redundancy analysis showed that the dissipation of ARGs during composting was linked to various environmental factors such as moisture. Bacterial succession as well as profile of biocide and metal resistance genes (BMRGs) were the determinants which constructed the antibiotic resistome during manure composting. However, the residues of ARGs and pathogens in compost products may still pose risks to human and crops after fertilization.
Collapse
Affiliation(s)
- Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Na Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
30
|
Fan NS, Zhu XL, Wu J, Tian Z, Bai YH, Huang BC, Jin RC. Deciphering the microbial and genetic responses of anammox biogranules to the single and joint stress of zinc and tetracycline. ENVIRONMENT INTERNATIONAL 2019; 132:105097. [PMID: 31434054 DOI: 10.1016/j.envint.2019.105097] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
The feasibility of using anaerobic ammonium oxidation (anammox) process to treat wastewaters containing antibiotics and heavy metals was evaluated in this study. The nitrogen removal performance and characteristic parameters were monitored during the whole experimental period of 258 d. The single and joint effects of zinc and tetracycline on the microbial community were studied in upflow anaerobic sludge blanket (UASB) reactors. The anammox performance remained at levels comparable with the initial state at the lower inhibitor concentrations (zinc, 0-2.26 mg L-1; tetracycline, 0-0.5 mg L-1). When the concentrations of zinc and tetracycline increased to 3.39 mg L-1 in R1 and 1.0 mg L-1 in R2, an obvious deterioration in performance was observed. Dual inhibitors with a total concentration of ≥3 mg L-1 caused dramatic decreases in the nitrogen removal efficiency of R3. The quantification results showed that the abundances of eight antibiotic resistance genes (ARGs), czcA and intI1 in the experimental reactors generally increased under stress from metals or/and antibiotics, with final values higher than in the control, while the functional gene abundances were lower. Moreover, most genes exhibited significant correlations. Microbial community analysis indicated that Planctomycetes (represented by Candidatus Kuenenia) was inhibited by both zinc and tetracycline, but still held the dominant position. Furthermore, Caldilinea (belonging to Chloroflexi) maintained a higher abundance during the inhibitory period, implying its potential resistance to both inhibitors. These findings suggested that anammox could be inhibited by metals and antibiotics, but it has the potential to remove nitrogen from wastewaters containing both of them within the concentration threshold.
Collapse
Affiliation(s)
- Nian-Si Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-Ling Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhe Tian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu-Hui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|