1
|
Kim MS, Chae E, Min HG, Kim JG. Applicability of Brassica juncea as a bioindicator for As contamination in soil near the abandoned mine area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120805. [PMID: 38599085 DOI: 10.1016/j.jenvman.2024.120805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Soil monitoring in abandoned mine areas is important from the perspective of ecological and human health risk. Arsenic (As) is a predominant metalloid contaminant in abandoned mine area and its behavior has been influenced by various soil characteristics. Bioindicator can be a useful tool in terms of testing the extent to which they are uptaken by plants bioavailability. Eighteen soils near the mine tailings dam were collected to investigate the effect of As contamination on As absorption by Brassica juncea. The pH range of the experimental soils was between 4.90 and 8.55, and the total As concentrations were between 34 mg kg-1 and 3017 mg kg-1. The bioavailability of As was evaluated by Olsen method, and B. juncea was cultivated in eighteen soils for 3 weeks. Principal component analysis, correlation, and multiple regression analysis were performed to estimate a significant factor affecting As uptake by B. juncea. All statistical results indicated that As bioavailability in soil is the main factor affecting As uptake in root and shoot of B. juncea. Although translocation process, the amount of As in shoot was exponentially explained by As bioavailability in soil. This result suggests that the contamination and bioavailability of As can be confirmed only by analyzing the shoot of B. juncea, which is be easily found in environmental ecosystem, and implies the applicability of B. juncea as a bioindicator for the monitoring of As contamination and its behavior in soil ecosystem.
Collapse
Affiliation(s)
- Min-Suk Kim
- Waste Resources Management Division, Ministry of Environment, Sejong, 30103, Republic of Korea
| | - Eunji Chae
- OJeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun-Gi Min
- OJeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong-Gyu Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Chen J, Qiao D, Yuan T, Feng Y, Zhang P, Wang X, Zhang L. Biotechnological production of ectoine: current status and prospects. Folia Microbiol (Praha) 2024; 69:247-258. [PMID: 37962826 DOI: 10.1007/s12223-023-01105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Ectoine is an important natural secondary metabolite in halophilic microorganisms. It protects cells against environmental stressors, such as salinity, freezing, drying, and high temperatures. Ectoine is widely used in medical, cosmetic, and other industries. Due to the commercial market demand of ectoine, halophilic microorganisms are the primary method for producing ectoine, which is produced using the industrial fermentation process "bacterial milking." The method has some limitations, such as the high salt concentration fermentation, which is highly corrosive to the equipment, and this also increases the difficulty of downstream purification and causes high production costs. The ectoine synthesis gene cluster has been successfully heterologously expressed in industrial microorganisms, and the yield of ectoine was significantly increased and the cost was reduced. This review aims to summarize and update microbial production of ectoine using different microorganisms, environments, and metabolic engineering and fermentation strategies and provides important reference for the development and application of ectoine.
Collapse
Affiliation(s)
- Jun Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, 23702, China
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Ministry of Natural Resources, State Oceanic Administration & Second Institute of Oceanography, Hangzhou, 310012, China
| | - Deliang Qiao
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Anhui Province Key Laboratory for Quality Evaluationand, Improvement of Traditional Chinese Medicine, West Anhui University, Lu, 237012, China
| | - Tao Yuan
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yeyuan Feng
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Pengjun Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Xuejun Wang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Li Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
- Anhui Province Key Laboratory for Quality Evaluationand, Improvement of Traditional Chinese Medicine, West Anhui University, Lu, 237012, China.
| |
Collapse
|
3
|
Zhi Y, Li X, Wang X, Jia M, Wang Z. Photosynthesis promotion mechanisms of artificial humic acid depend on plant types: A hydroponic study on C3 and C4 plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170404. [PMID: 38281646 DOI: 10.1016/j.scitotenv.2024.170404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
It is feasible to improve plant photosynthesis to address the global climate goals of carbon neutrality. The application of artificial humic acid (AHA) is a promising approach to promote plant photosynthesis, however, the associated mechanisms for C3 and C4 plants are still unclear. In this study, the real-time chlorophyll synthesis and microscopic physiological changes in plant leave cells with the application of AHA were first revealed using the real-time chlorophyll fluorescence parameters and Non-invasive Micro-test Technique. The transcriptomics suggested that the AHA application up-regulated the genes in photosynthesis, especially related to chlorophyll synthesis and light energy capture, in maize and the genes in photosynthetic vitality and carbohydrate metabolic process in lettuce. Structural equation model suggested that the photodegradable substances and growth hormones in AHA directly contributes to photosynthesis of C4 plants (0.37). AHA indirectly promotes the photosynthesis in the C4 plants by upregulating functional genes (e.g., Mg-CHLI and Chlorophyllase) involved in light capture and transformation (0.96). In contrast, AHA mainly indirectly promotes C3 plants photosynthesis by increasing chlorophyll synthesis, and the Rubisco activity and the ZmRbcS expression in the dark reaction of lettuce (0.55). In addition, Mg2+ transfer and flux in C3 plant leaves was significantly improved by AHA, indirectly contributes to plant photosynthesis (0.24). Finally, the AHA increased the net photosynthetic rate of maize by 46.50 % and that of lettuce by 88.00 %. Application of the nutrients- and hormone-rich AHA improves plant growth and photosynthesis even better than traditional Hoagland solution. The revelation of the different photosynthetic promotion mechanisms on C3 and C4 plant in this work guides the synthesis and efficient application of AHA in green agriculture and will propose the development of AHA technology to against climate change resulting from CO2 emissions in near future.
Collapse
Affiliation(s)
- Yancai Zhi
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaowei Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Minghao Jia
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
4
|
Wang N, Ren J, Wang L, Wang Y, Wang Z, Guo D. A preliminary study to explain how Streptomyces pactum (Act12) works on phytoextraction: soil heavy metal extraction, seed germination, and plant growth. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:757. [PMID: 37247015 DOI: 10.1007/s10661-023-11340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Streptomyces pactum (Act12) can both promote plant growth and strengthen heavy metal mobilization. Nevertheless, the mechanisms of how Act12 works during the phytoextraction process are still unknown. The present work investigated whether the metabolites produced by Act12 could influence the seed germination and the growth of potherb mustard and explored its mobilizing effect on soil cadmium (Cd) and zinc (Zn). The results showed that the germination potential and rate of potherb mustard seed treated with Act12 fermentation broth were 1.0- and 0.32-folds higher than those of control, probably due to the interruption of seed dormant stage. We also found that Act12 inoculation not only promoted the dry biomass (6.82%) of potherb mustard, but also increased the leaf chlorophyll (11.8%) and soluble protein (0.35%) production. The boosted seed germination rate under Act12 treatment (up to 63.3%) indicated that Act12 enhanced the resistance of potherb mustard seeds to Cd and Zn and alleviated their physiological toxicity. The generated metabolites during the Act12 fermentation posed positive impact on the availability of soil Cd and Zn. These findings bring new insight into the Act12-assisted phytoextraction of Cd and Zn from contaminated soils.
Collapse
Affiliation(s)
- Nina Wang
- School of Petroleum and Environment Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Jie Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Linlin Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Ze Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Di Guo
- School of Petroleum and Environment Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
5
|
Wang L, Wang N, Guo D, Shang Z, Zhang Y, Liu S, Wang Y. Rhizobacteria helps to explain the enhanced efficiency of phytoextraction strengthened by Streptomyces pactum. J Environ Sci (China) 2023; 125:73-81. [PMID: 36375954 DOI: 10.1016/j.jes.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/16/2023]
Abstract
The ultimate purpose of phytoextraction is not only to remove heavy metals from soil but also to improve soil quality. Here, we evaluated how the joint effect of Streptomyces pactum (strain Act12) and inorganic (Hoagland's solution) and organic (humic acid and peat) nutrients affected the phytoextraction practice of cadmium (Cd) and zinc (Zn) by potherb mustard, and the microbial community composition within rhizosphere was also investigated. The results indicated that the nutrients exerted synergistically with Act12, all increasing the plant biomass and Cd/Zn uptakes. The inoculation of Act12 alone significantly increased dehydrogenase activity of rhizosphere soil (P < 0.05), while urease and alkaline phosphatase activities varied in different dosage of Act12. Combined application of microbial strain with nutrients increased enzymatic activities with the elevated dosage of Act12. 16S ribosomal RNA high-throughput sequencing analysis revealed that Act12 inoculation reduced the diversity of rhizosphere bacteria. The Act12 and nutrients did not change dominant phyla i.e., Proteobacteria, Bacteroidetes, Gemmatimonadetes, Actinobacteria and Acidobacteria, but their relative abundance differed among the treatments with: Peat > Act12 > Humic acid > Hoagland's solution. Comparatively, Sphingomonas replaced Thiobacillus as dominant genus after Act12 application. The increase in the Sphingomonas and Flavisolibacter abundances under Act12 and nutrients treatments gave rise to growth-promoting effect on plant. Our results revealed the important role for rhizosphere microbiota in mediating soil biochemical traits and plant growth, and our approach charted a path toward the development of Act12 combined with soil nutrients to enhance soil quality and phytoextraction efficiency in Cd/Zn-contaminated soils.
Collapse
Affiliation(s)
- Linlin Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Nina Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Di Guo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Zhengzheng Shang
- Xi'an Aisen Environmental Information Technology Service Co., Ltd, Xi'an 710119, China
| | - Yiying Zhang
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Song Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China.
| |
Collapse
|
6
|
Zhou X, Shi A, Rensing C, Yang J, Ni W, Xing S, Yang W. Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119266. [PMID: 35413404 DOI: 10.1016/j.envpol.2022.119266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Soil Cd and Zn contamination has become a serious environmental problem. This work explored the performance of wood vinegar (WV) in enhancing the phytoextraction of Cd/Zn by hyperaccumulator Sedum alfredii Hance. Rhizosphere chemical properties, enzyme activities and bacterial community were analyzed to determine the mechanisms of metal accumulation in this process. Results demonstrated that, after 120 days growth, different times dilution of WV increased the shoot biomass of S. alfredii by 85.2%-148%. In addition, WV application significantly increased soil available Cd and Zn by lowing soil pH, which facilitated plant uptake. The optimal Cd and Zn phytoextraction occurred from the 100 times diluted WV (D100), which increased the Cd and Zn extraction by 188% and 164%, compared to CK. The 100 and 50 times diluted WV significantly increased soil total and available carbon, nitrogen and phosphorus, and enhancing enzyme activities of urease, acid phosphatase, invertase and protease by 10.1-21.4%, 29.1-42.7%,12.2-38.3% and 26.8-85.7%, respectively, compared to CK. High-throughput sequencing revealed that the D 100 significantly increased the bacterial diversity compared to CK. Soil bacterial compositions at phylum, family and genera level were changed by WV addition. Compared to CK, WV application increased the relative abundances of genus with plant growth promotion and metal mobilization function such as, Bacillus, Gemmatimonas, Streptomyces, Sphingomonas and Polycyclovorans, which was positively correlated to biomass, Cd/Zn concentrations and extractions by S. alfredii. Structural equation modeling analysis showed that, soil chemical properties, enzyme activities and bacterial abundance directly or indirectly contributed to the biomass promotion, Cd, and Zn extraction by S. alfredii. To sum up, WV improved phytoextraction efficiency by enhancing plant growth, Cd and Zn extraction and increasing soil nutrients, enzyme activities, and modifying bacterial community.
Collapse
Affiliation(s)
- Xueqi Zhou
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Li Y, Ali A, Jeyasundar PGSA, Azeem M, Tabassum A, Guo D, Li R, Mian IA, Zhang Z. Bacillus subtilis and saponin shifted the availability of heavy metals, health indicators of smelter contaminated soil, and the physiological indicators of Symphytum officinale. CHEMOSPHERE 2021; 285:131454. [PMID: 34271464 DOI: 10.1016/j.chemosphere.2021.131454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/10/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Bacillus subtilis and saponin were tested for the uptake of heavy metals (HMs) by Symphytum officinale grown in a smelter-contaminated soil in completely randomized design. Soil pH and electrical conductivity increased by 0.11 unit (T3) and 754 mS cm-1 (T2), respectively. The bioavailable Zn decreased by 5.80% (T2); Cd and Pb increased by 6.21% (T2) and 13.46% (T3), respectively. Soil urease increased by 24% (T3) and alkaline phosphatase, β-glucosidase, and dehydrogenase decreased by 20% (T2), 27.70% (T2), and 21% (T1), respectively. Soil amendments altered the microbial diversity. Fourier-transform infrared spectroscopy and X-ray diffraction reported no obvious changes, except saponin application, which led to possible release of HMs in soil. The fresh weight of Symphytum officinale increased by 21.3 and 5.50% in T2 and T3, respectively. Chlorophyll (a) and carotenoid decreased by the sole application of B. subtilis and saponin and vice-versa for chlorophyll (b). Mono-application of B. subtilis efficiently increased the peroxidase (POD: 27%) and polyphenol oxidase (PPO: 13.56%), whereas, co-application enhanced the phenylalanine ammonia-lyase (PAL: 6.50%) level in shoots. Zn concentration in the shoots and roots declined by 12.75 and 27.32% in T1, respectively. Cd increased (3.92%, T3) in shoots and decreased (39.25%, T1) in roots; Pb concentration remained below detection in shoots and increased by 40% (T3) in roots due to accumulation in dead cells and cell vacuoles. Overall, B. subtilis and saponin influenced the bioavailability of HMs, enzymatic activities, and bacterial abundance in the soil; plant growth indicators, antioxidants activities, and metal uptake in shoots and roots.
Collapse
Affiliation(s)
- Yiman Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; School of Environmental and Municipal Engineering, Xian University of Architecture and Technology, Xian, 715000, China.
| | | | - Muhammad Azeem
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Anum Tabassum
- Department of Microbiology, Women University, Mardan, 23200, Pakistan
| | - Di Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ishaq Ahmad Mian
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, 2500, Pakistan
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
8
|
Bacterial inoculant-assisted phytoremediation of heavy metal-contaminated soil: Inoculant development and the inoculation effects. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00804-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Zhao H, Huang X, Liu F, Hu X, Zhao X, Wang L, Gao P, Li J, Ji P. Potential of a novel modified gangue amendment to reduce cadmium uptake in lettuce (Lactuca sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124543. [PMID: 33223317 DOI: 10.1016/j.jhazmat.2020.124543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
In this study, the modified gangue (GE) was prepared by calcination at lower temperatures using potassium hydroxide (KOH) as the activating agent. The field emission scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray fluorescence (XRF) methods were employed to analyze the physicochemical characteristics of GE before and after the modification. Besides, the GE and commercial zeolite (ZE) were compared in the remediation of Cd-contaminated soil in field experiments. The results showed that both the GE and ZE had positive effects on the stabilization of Cd, decreasing the available Cd by 21.2-33.9% and 22.1-28.2%, respectively, while no significant difference was observed between the two amendments, indicating that the modification of GE was successful. Moreover, the application of GE decreased the Cd mobilization and uptake in lettuce shoot and root by 54.9-61.5% and 9.3-13.2%, respectively, and at the same time, the bio-available Cd decreased by 20.9-34.5%. Moreover, with the addition of GE, activities of urease and alkaline phosphatase increased in soil, while the peroxidase and superoxide dismutase activities were notably reduced in plants. Therefore, GE could be used as an effective amendment for the alleviation of Cd accumulation and toxicity, and thereby improve food safety.
Collapse
Affiliation(s)
- Hanghang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Original Agro-environmental Pollution Prevention and Control, Ministry of Agriculture/Tianjin Key Laboratory of Agro-environment and Safe-product, Tianjin 300191, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fuhao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiongfei Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xin Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Pengcheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Scientific Laboratory of Heyang Agricultural Environment and Farmland Cultivation, Ministry of Agriculture and Rural Affairs, Weinan 714000, Shaanxi, China
| | - Jingtian Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; The First Geological and Mineral Survey Institute of Henan Bureau of Geology and Mineral Exploration and Development, Applied Engineering Technology Research Center of Ecology and Exploration Geochemistry, Luoyang 471003, Henan, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
| |
Collapse
|