1
|
Su PG, Lin YF. Fabrication of an ultra-sensitive humidity sensor based on polypyrrole flakes/β-AgVO 3 nanowires nanocomposite films via in situ photopolymerization. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40313164 DOI: 10.1039/d5ay00279f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
An ultra-sensitive impedance-type humidity sensor was developed through in situ UV-irradiation photopolymerization of a polypyrrole flakes (PPy Fs)/β-AgVO3 nanowires (NWs) nanocomposite film on an alumina substrate. The composition, microstructure, and morphology of the PPy Fs/β-AgVO3 NWs nanocomposite films were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The influence of varying PPy Fs concentrations on the electrical properties and humidity-sensing performance of PPy Fs/β-AgVO3 nanocomposite films was systematically investigated. A PPy Fs/β-AgVO3 NWs nanocomposite film composed of 0.5 mL of PPy Fs and 0.1 g of β-AgVO3 NWs exhibited a broad operating humidity range, exceptional sensitivity, satisfactory linearity, minimal hysteresis, rapid response/recovery time, and low temperature dependence. The humidity-sensing mechanism of the PPy Fs/β-AgVO3 NWs nanocomposite film-based sensor was analyzed using complex impedance spectra.
Collapse
Affiliation(s)
- Pi-Guey Su
- Department of Chemistry, Soochow University, Taipei 111, Taiwan.
| | - Ya-Fang Lin
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| |
Collapse
|
2
|
Thirugnanam B, Mani P, Almutairi BO, Sathishkumar K, Settu M. Engineered oxygen vacancies in NiCo 2O 4/BiOI heterostructures for enhanced photocatalytic pollutant degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66866-66877. [PMID: 39648246 DOI: 10.1007/s11356-024-35728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
To address the bottleneck issue of poor carrier separation and transfer efficiency in NiCo2O4 photocatalyst, a novel 1D/2D-rod-on-rose-like NiCO2O4/BiOI nanohybrid with abundant OV's was successfully synthesized using a single-step hydrothermal method and employed to the photocatalytic degradation of Rhodamine B (RhB). The study revealed that the optimized NiCo2O4-OV/BiOI hybrid could possess superior photocatalytic degradation efficiency towards RhB degradation under visible light with a rate constant that was 3.8 and 3.03 times greater than that of BiOI and NiCo2O4-OV. Experimental findings indicated that the formation of NiCo2CO4-OV/BiOI heterojunction significantly improved the charge separation efficiency and facilitated the formation of surface OV's. These OVs enhanced photogenerated e--h+ separation and increased catalytic efficiency. Quenching experiments results confirmed that both holes and superoxide radicals are playing crucial roles in the degradation process. Thus, an oxygen vacancy and engineering NiCo2CO4-OV/BiOI heterojunction-enhanced degradation mechanism was proposed, offering insights for the integration of advanced oxidation technologies and the development of catalytic materials to enhance pollutant degradation efficiency.
Collapse
Affiliation(s)
- Bavani Thirugnanam
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, India.
- Center for Energy and Environment, Karpagam Academy of Higher Education, Coimbatore, 641021, India.
| | - Preeyanghaa Mani
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-Ku, Kyoto, 6158510, Japan
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha, Chennai, India
- Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Munusamy Settu
- Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
3
|
Alsolami ES, Mkhalid IA, Shawky A, Hussein MA. AgVO3-anchored 2D CeO2 nanocrystals prepared by solution process for visible-light-driven photooxidation of ciprofloxacin antibiotic in water. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Ding J, Li C, Yin H, Zhou Y, Wang S, Liu K, Li M, Wang J. One-pot solvothermal synthesis of Bi/Bi 2S 3/Bi 2WO 6 S-scheme heterojunction with enhanced photoactivity towards antibiotic oxytetracycline degradation under visible light. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121550. [PMID: 37019263 DOI: 10.1016/j.envpol.2023.121550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
A novel noble-metal-free ternary Bi/Bi2S3/Bi2WO6 S-scheme heterojunction and Schottky junction was successfully synthesized by one-pot solvothermal method. UV-Vis spectroscopy showed improved light absorption in the ternary composite structure. Electrochemical impedance spectroscopy and photoluminescence spectroscopy confirmed the reduced interfacial resistivity and photogenerated charge recombination rate of the composites. Using oxytetracycline (OTC) as model pollutant, Bi/Bi2S3/Bi2WO6 presented high photocatalytic activity towards OTC degradation, where the removal rate of Bi/Bi2S3/Bi2WO6 was 1.3 and 4.1 times higher than that of Bi2WO6 and Bi2S3 under visible light irradiation in 15 min, respectively. The excellent visible photocatalysis activity was attributed to the SPR effect of metal Bi and the direct S-scheme heterojunction of Bi2S3 and Bi2WO6 with the matched energy band structure, which led to the increased electron transfer rate and high separation efficiency of the photogenerated election-hole pairs. After seven cycles, the degradation efficiency for 30 ppm OTC with Bi/Bi2S3/Bi2WO6 only decreased 20.4%. In the degradation solution, the composite photocatalyst leached only 16 ng/L Bi and 26 ng/L W of metal with high photocatalytic stability. Moreover, free radical quenching experiment and electron spin-resonance spectroscopy experiment revealed that ·O2-, 1O2, h+ and ·OH played crucial roles in the photocatalytic degradation of OTC. Based on the analysis of high performance liquid chromatography-mass spectrometry for the intermediates in the degradation process, the degradation pathway was provided. Finally, combined with ecotoxicological effect analysis, the decreased toxicity of OTC after degradation towards rice seedlings was confirmed.
Collapse
Affiliation(s)
- Jia Ding
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China; College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Conghui Li
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China; Ganjiang Innovation Academy, Chinese Academy of Sciences, 341000, Ganzhou, Jiangxi, PR China; School of Rare Earths, University of Science and Technology of China, 230026, Hefei, Anhui, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Suo Wang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Kexue Liu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Min'an Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China.
| |
Collapse
|
5
|
Sasikala P, Bavani T, Selvaraj M, Preeyanghaa M, Neppolian B, Murugesan S, Madhavan J. A Z-scheme BiYO 3/g-C 3N 4 heterojunction photocatalyst for the degradation of organic pollutants under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41095-41106. [PMID: 36630043 DOI: 10.1007/s11356-022-25027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Photocatalysis is one of the fascinating fields for the wastewater treatment. In this regard, the present study deals with an effective visible light active BiYO3/g-C3N4 heterojunction nanocomposite photocatalyst with various ratios of BiYO3 and g-C3N4 (1:3, 1:1 and 3:1), synthesised by a wet chemical approach. The as-synthesised nanocomposite photocatalysts were investigated via different physicochemical approaches like Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electrons microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and photoelectrochemical studies to characterise the crystal structure, morphology, optical absorption characteristics and photoelectrochemical properties. The photocatalytic degradation ability of the prepared photocatalytic samples was also analysed through the degradation of RhB in the presence of visible light irradiation. Of all the synthesised photocatalysts, the optimised CB-1 composite showed a significant photocatalytic efficiency (88.7%), with excellent stability and recyclability after three cycles. O2•- and •OH radicals were found to act a major role in the RhB degradation using optimised CB-1 composite, and it possessed ~ 1 times greater photocurrent intensity than the pristine g-C3N4 and BiYO3. In the present work, a direct Z-scheme heterojunction BiYO3/g-C3N4 with a considerably improved photocatalytic performance is reported.
Collapse
Affiliation(s)
- Parthasarathy Sasikala
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mani Preeyanghaa
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, India
| | - Bernaurdshaw Neppolian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, India
| | | | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| |
Collapse
|
6
|
Bavani T, Sasikala P, Arumugam S, Malathi A, Praserthdam P, Madhavan J. A novel S-scheme Ws 2/BiYWO 6 electrostatic heterostructure for enhanced photocatalytic degradation performance towards the degradation of Rhodamine B. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34468-34480. [PMID: 36512282 DOI: 10.1007/s11356-022-24614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Constructing S-scheme heterojunction between two semiconductor materials is an effective route to increase the photocatalytic degradation efficiency. Here, a novel S-scheme WS2/BiYWO6 heterojunction photocatalyst was prepared by wet chemical route. At the same time, the photocatalytic degradation performance of the fabricated materials was analyzed by the degradation of Rhodamine B under visible light. Of all prepared WS2/BiYWO6 composites, the 20 wt.% WS2 loaded WS2/BiYWO6 composite exhibited an enhanced photocatalytic degradation ability than other prepared photocatalysts. Here, O2·- and ·OH radicals are performing a pivotal role in the Rhodamine B degradation and the optimized composite shows greater photocurrent intensity than pure BiYWO6 and WS2, respectively. Also, the synthesized photocatalyst maintains its stability with negligible changes even after three cycles. Thereby, the constructed S-scheme WS2/BiYWO6 heterojunction is a potential material for the wastewater remediation.
Collapse
Affiliation(s)
- Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Parthasarathy Sasikala
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Swaminathan Arumugam
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Arumugam Malathi
- Center of Excellence On Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piyasan Praserthdam
- Center of Excellence On Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| |
Collapse
|
7
|
Arumugam S, Bavani T, Selvaraj M, Al-Shehri BM, Preeyanghaa M, Jung S, Theerthagiri J, Neppolian B, Murugesan S, Madhavan J, Choi MY. Construction of direct FeMoO 4/g-C 3N 4-2D/2D Z-scheme heterojunction with enhanced photocatalytic treatment of textile wastewater to eliminate the toxic effect in marine environment. CHEMOSPHERE 2023; 313:137552. [PMID: 36526136 DOI: 10.1016/j.chemosphere.2022.137552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
A novel FeMoO4/g-C3N4-2D/2D Z-scheme heterojunction photocatalyst was prepared via wet chemical method. The observed structural morphology of FeMoO4/g-C3N4 reveals the 2D-iron molybdate (FeMoO4) nanoplates compiled with the 2D-graphitic carbon nitride (g-C3N4) nanosheets like structure. The photocatalytic activity of the g-C3N4, FeMoO4, and FeMoO4/g-C3N4 composites were studied via the degradation of Rhodamine B (RhB) as targeted textile dye under visible light irradiation (VLI). The optimal FeMoO4/g-C3N4 (1:3 ratio of g-C3N4 and FeMoO4) composite show an enhanced degradation performance with rate constant value of 0.02226 min-1 and good stability even after three cycles. Thus, the h+ and O2•-are the key radicals in the degradation of RhB under VLI. It is proposed that the FeMoO4/g-C3N4 Z-scheme heterojunction effectively enhances the transfer and separation ability of e-/h+ pairs, by the way increasing the photocatalytic efficiency towards the RhB degradation. Thus, the newly constructed Z-scheme FeMoO4/g-C3N4 heterojunction photocatalyst is a promising material for the remediation of wastewater relevant to elimination of toxic effect in marine environment.
Collapse
Affiliation(s)
- Swaminathan Arumugam
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Badria M Al-Shehri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mani Preeyanghaa
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Sieon Jung
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Bernaurdshaw Neppolian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | | | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
8
|
Bavani T, Madhavan J, Preeyanghaa M, Neppolian B, Murugesan S. Construction of direct Z-scheme g-C 3N 4/BiYWO 6 heterojunction photocatalyst with enhanced visible light activity towards the degradation of methylene blue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10179-10190. [PMID: 36071357 DOI: 10.1007/s11356-022-22756-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Construction of the Z-scheme heterojunction photocatalyst achieved highly improved photocatalytic ability by its high redox ability of the photoinduced e--h+ pairs. In the study, Z-scheme g-C3N4/BiYWO6 heterojunction photocatalyst is prepared by the single-step hydrothermal method. Further, its photocatalytic ability was assessed by degrading methylene blue under visible light exposure. Particularly, the optimized 30 wt% of g-C3N4 in the g-C3N4/BiYWO6 composite exposes almost complete degradation after 90 min, that is ~ 3.0 times greater than the bare BiYWO6 and g-C3N4 with the rate constant value 0.032 min-1. Experimentally, the radical trapping studies indicate O2·- and ·OH radicals are playing a vital role in the photocatalytic degradation process. Also, the Z-scheme g-C3N4/BiYWO6 heterojunction photocatalyst exhibits excellent photoelectrochemical property and it is stable after 5 cycles, which indicates its good reusability nature. These enhancements are due to the newly formed heterostructure that facilitates the migration and separation efficiency of the photoproduced e--h+ pairs. Hence, the synthesized Z-scheme g-C3N4/BiYWO6 heterostructure could be an excellent material for wastewater remediation works.
Collapse
Affiliation(s)
- Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632115, India
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632115, India.
| | - Mani Preeyanghaa
- Department of Physics and Nanotechnology, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Bernaurdshaw Neppolian
- Department of Physics and Nanotechnology, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | | |
Collapse
|
9
|
Plasmonic Ag modified Ag3VO4/AgPMo S-scheme heterojunction photocatalyst for boosted Cr(VI) reduction under visible light: Performance and mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
BiFeO3-based Z scheme photocatalytic systems: Advances, mechanism, and applications. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Li S, Dong Z, Wang Q, Zhou X, Shen L, Li H, Shi W. Antibacterial Z-scheme ZnIn 2S 4/Ag 2MoO 4 composite photocatalytic nanofibers with enhanced photocatalytic performance under visible light. CHEMOSPHERE 2022; 308:136386. [PMID: 36096308 DOI: 10.1016/j.chemosphere.2022.136386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Considering the biocompatibility of natural proteins and the strong photo-redox capability of Z-scheme heterojunctions, we fabricated Z-scheme ZnIn2S4/Ag2MoO4@Zein (Z ZA) photocatalytic membranes via electrospinning and in-situ precipitation for enrofloxacin (ENR) degradation. Z ZA exhibit a fiber structure wrapped with ZnIn2S4/Ag2MoO4 heterojunctions. Photocatalytic studies and various characterization results certified that the Z-scheme structure between ZnIn2S4 and Ag2MoO4 significantly increases the lifetime and separation efficiency of photogenerated carriers, which in turn enhances the photodegradation of ENR. The degradation rate of Z ZA-10 (ZnIn2S4/10 wt% Ag2MoO4@Zein) with the highest catalytic activity could reach 100% within 120 min compared with other samples. For ENR degradation, •O2- radicals were certified to be the primary active species by trapping experiments, and several possible conversion pathways of ENR in photocatalytic reactions were proposed. Furthermore, the antibacterial rates of Z ZA-20 (ZnIn2S4/20 wt% Ag2MoO4@Zein) against B. subtilis, P. aeruginosa, S. aureus, and E. coli could reach 90.09%, 89.78%, 84.34%, and 95.31%, respectively. Antibacterial evaluations and cytotoxicity assays demonstrated that Z ZA photocatalytic films had desirable antibacterial properties and low cytotoxicity, rendering them safe and effective for use in the treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Suyun Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Zhenyou Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Qinqing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xueqing Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Haiqing Li
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Wenyan Shi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China; Key Laboratory of Organic Compound Pollution Engineering (MOE), Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
12
|
Arumugam S, Bavani T, Preeyanghaa M, Alaswad SO, Neppolian B, Madhavan J, Murugesan S. A facile synthesis of visible light driven Ni 3V 2O 8 nano-cube/BiVO 4 nanorod composite photocatalyst with enhanced photocatalytic activity towards degradation of acid orange 7. CHEMOSPHERE 2022; 308:136100. [PMID: 36064027 DOI: 10.1016/j.chemosphere.2022.136100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Photocatalysis is one of the promising method to degrade harmful organic pollutants under visible light exposure. In this work, a novel Ni3V2O8/BiVO4 nanocomposite has been prepared by one-pot hydrothermal method, and investigated through X-ray diffraction, FT-IR, UV-visible diffuse reflectance spectroscopy, scanning and transmission electron microscopy and photoluminescence techniques. Subsequently, the photocatalytic performance of Ni3V2O8/BiVO4 nanocomposite has been examined by degrading AO7 under visible light illumination. The photocatalytic efficiency of the optimized 1:2 ratio of Ni3V2O8/BiVO4 nanocomposite photocatalyst is found to be 87% with a rate constant value of 0.03387 min-1 which are higher than those of other prepared photocatalysts. This nanocomposite exhibits excellent stability even after 3 three cycles, and shows 1.135- and 1.17-times higher photocurrent intensity than pure BiVO4 and Ni3V2O8 respectively. The mechanism for the degradation of AO7 over Ni3V2O8/BiVO4 nanocomposite photocatalyst has been proposed.
Collapse
Affiliation(s)
- Swaminathan Arumugam
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Mani Preeyanghaa
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India
| | - Saleh O Alaswad
- Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Bernaurdshaw Neppolian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| | - Sepperumal Murugesan
- Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India
| |
Collapse
|
13
|
Bao Y, Liu Y, Zhang Z, Pan J, Li X, Zhao B, Wang R, Liu J. Constructing 2D/2D ultrathin Ti 3C 2/SnS 2 Schottky heterojunctions toward efficient tetracycline degradation. CHEMOSPHERE 2022; 307:136118. [PMID: 36007746 DOI: 10.1016/j.chemosphere.2022.136118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In this article, a novel 2D/2D ultrathin Ti3C2/SnS2 Schottky heterojunctions have been prepared via a facile hydrothermal process. The properties of the heterojunction were fully characterized. The photocatalytic degradation performance of composites was examined by photo-degradation of tetracycline hydrochloride (TC-HCL) under visible light irradiation. Compared with single SnS2, 3% Ti3C2/SnS2 displayed the better performance, the removal rate of TC-HCL reached 87.7% and the kinetic rate constant (k) of the optimal 3% Ti3C2/SnS2 composite was about 2.7 times of that of bare SnS2. The improved photocatalytic activity of Ti3C2/SnS2 is ascribed to the formation of 2D/2D Schottky heterojunction, which promotes the spatial charge separation and increases the surface reactive sites.
Collapse
Affiliation(s)
- Yongchao Bao
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yicai Liu
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Zishang Zhang
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Junkai Pan
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaoya Li
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Botao Zhao
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Runyu Wang
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Juan Liu
- College of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
14
|
Nag R, Paul S, Bera A. A Type‐II Heterostructure with a KBiFe
2
O
5
Brownmillerite Core and a ZnO Nanoparticle Shell for Enhanced Optoelectronic Performance. ChemistrySelect 2022. [DOI: 10.1002/slct.202202802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Riya Nag
- Department of Physics Midnapore College (Autonomous) Raja Bazar Main Rd 721101 Midnapore India
| | - Subir Paul
- School of Biological Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mallick Rd. Kolkata 700032 India
| | - Abhijit Bera
- Department of Physics Midnapore College (Autonomous) Raja Bazar Main Rd 721101 Midnapore India
| |
Collapse
|
15
|
Arumugam M, Seralathan KK, Praserthdam S, Tahir M, Praserthdam P. Synthesis of novel graphene aerogel encapsulated bismuth oxyiodide composite towards effective removal of methyl orange azo-dye under visible light. CHEMOSPHERE 2022; 303:135121. [PMID: 35623428 DOI: 10.1016/j.chemosphere.2022.135121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Development of novel and eco-friendly composite photocatalysts for the efficient removal of contaminants from wastewater is the need of the hour. In this study, visible light responsive novel graphene aerogel/bismuth oxyiodide (GA/BiOI) composite was synthesized via low-temperature solvothermal method. The synthesized GA/BiOI composite was tested for methyl orange (MO) azo-dye degradation under visible light. The graphene aerogel nanosheets were wrapped onto the surface of the each individual BiOI microsphere, which encourages the interconnection charge transfer process. The light absorption properties of GA/BiOI composite were increased with the addition of graphene aerogel. The optimal 5%-GA/BiOI composite displayed higher MO removal efficiency, which is ∼2 fold more than the bare BiOI photocatalyst. This enhanced photocatalytic activity was on account of lower recombination rate of charge carriers, improved light absorption, and the high surface area. In addition, the 5%-GA/BiOI composite showed good stability until 3 cycles without deactivation. The plausible MO degradation mechanism was also proposed over GA/BiOI under visible light. This work provides a new perspective on the design and synthesis of graphene aerogel-based composite for environmental applications.
Collapse
Affiliation(s)
- Malathi Arumugam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Supareak Praserthdam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
16
|
Bavani T, Vinesh V, Neppolian B, Murugesan S, Selvaraj M, Madhavan J. One-step synthesis of rod-on-plate like 1D/2D-NiMoO 4/BiOI nanocomposite for an efficient visible light driven photocatalyst for pollutant degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65222-65232. [PMID: 35484456 DOI: 10.1007/s11356-022-19982-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Visible light active 1D/2D-NiMoO4/BiOI nanocomposite photocatalyst has been constructed by single step solvothermal method. Various compositions of NiMoO4/BiOI nanocomposites are prepared by loading different amounts of nickel molybdate (NiMoO4) (1, 2, 3 wt%) to the bismuth oxy iodide (BiOI) and investigated by XRD, FTIR, SEM, EDAX, TEM, UV-vis DRS, and PL analysis. Among the as-prepared photocatalysts, 1 wt% NiMoO4 incorporated BiOI (NMBI-1) showed superior photocatalytic activity with a rate constant of 0.0442 min-1 for methylene blue degradation. While the bandgap values of pure BiOI and NiMoO4 are 1.94 and 2.43 eV, respectively, the optimized NMBI-1 exhibited a lower bandgap energy of 1.64 eV, and showed about 2 and 3.7 times higher photodegradation ability than the pure NiMoO4 and BiOI, respectively, towards MB removal under visible light. The NMBI-1 nanocomposite photocatalyst is stable even after four cycles, indicating an excellent photostability and recyclability. Charge carriers on the interface of NiMoO4 and BiOI easily transferred via the newly formed heterojunction, thereby increasing the photocatalytic performance. Photochemically formed h+ and.OH are found to be the major species in the MB removal under visible light illumination. Therefore, the 1D/2D-NiMoO4/BiOI nanocomposite photocatalyst materials may be considered for the wastewater remediation processes.
Collapse
Affiliation(s)
- Thirungnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632115, India
| | - Vasudevan Vinesh
- Department of Physics and Nanotechnology, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India
| | - Bernaurdshaw Neppolian
- Department of Physics and Nanotechnology, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India
| | - Sepperumal Murugesan
- Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632115, India.
| |
Collapse
|
17
|
Koyyada G, Goud BS, Devarayapalli KC, Shim J, Vattikuti SVP, Kim JH. BiFeO 3/Fe 2O 3 electrode for photoelectrochemical water oxidation and photocatalytic dye degradation: A single step synthetic approach. CHEMOSPHERE 2022; 303:135071. [PMID: 35618059 DOI: 10.1016/j.chemosphere.2022.135071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Herein, mixed-phase BiFeO3/Fe2O3 (BF-M) nanocomposite has been successfully prepared in a simple single-step synthetic strategy and its structural, physicochemical and magnetic properties have been characterized. The performance of as-synthesized mixed-phase BF-M catalyst has been investigated in photoelectrochemical (PEC) water oxidation and photocatalytic dye degradation analysis by comparing with the partials Fe2O3 with BiFeO3 (BF-P). The BF-M photocatalyst has degraded 95.7% of the rhodamine B (RhB) dye while BF-P has degraded 82.1% in 80 min. In addition, the BF-M electrode exhibited 0.57 mA cm-2 photocurrent density which was 1.83 times higher than the BF-P electrode (0.31 mA cm-2), signifying that the formation of a mixed-phase nanostructure interface is advantageous in enhancing light absorption capacity and reducing the rate of electron-hole recombination.
Collapse
Affiliation(s)
- Ganesh Koyyada
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, Gyeongbuk, 712-749, South Korea
| | - Burragoni Sravanthi Goud
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, Gyeongbuk, 712-749, South Korea
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Jae Hong Kim
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, Gyeongbuk, 712-749, South Korea.
| |
Collapse
|
18
|
vUltrasound-Promoted Hydrothermal Design of Ag-AgVO3/CeO2 Nanobelt/Nanosphere Heterostructure for Highly Efficacious Sunlight Induced Treatment of Dye Effluent. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Devarayapalli KC, Zeng J, Lee DS, Vattikuti SVP, Shim J. In-situ Pt nanoparticles decorated BiOBr heterostructure for enhanced visible light-based photocatalytic activity: Synergistic effect. CHEMOSPHERE 2022; 298:134125. [PMID: 35231473 DOI: 10.1016/j.chemosphere.2022.134125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Advanced functional materials for photocatalytic hydrogen (H2) generation using abundant solar energy are the core of new and renewable energy research. In this paper, we report the in-situ deposition of platinum quantum-sized particles (Pt QDs) on bismuth oxybromide (BBr) 3D marigold flowers with exposed (101)/(110) facets (i.e. BBr-Pt) hierarchies prepared by a simple solvo-thermal method acting as a surfactant/structure stabilizer in the presence of CTAB. Synthesized samples were characterized by a series of analytical techniques. Intimate contact as demonstrated by HRTEM, effect of Pt loading in 3D-BiOBr nanostructure on photocatalytic H2 production and crystal violet (CV) dye degradation rate under white LED light irradiation was studied. This was greatly improved by loading Pt QDs on BBr, the latter showing the highest photocatalytic activity for BBr-2Pt nanostructure, due to the synergistic effect of quantum-sized Pt nanoparticles and exposed ((101) and (110) planes). The BBr-2Pt nanostructure photocatalysts showed highest H2 generation of 320.69 μmol g-1, which is 142 folds larger than bare BBr (2.26 μmol g-1).
Collapse
Affiliation(s)
| | - Jie Zeng
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea.
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
20
|
Bavani T, Selvi A, Madhavan J, Selvaraj M, Vinesh V, Neppolian B, Vijayanand S, Murugesan S. One-pot synthesis of bismuth yttrium tungstate nanosheet decorated 3D-BiOBr nanoflower heterostructure with enhanced visible light photocatalytic activity. CHEMOSPHERE 2022; 297:133993. [PMID: 35189197 DOI: 10.1016/j.chemosphere.2022.133993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
A visible light driven BiOBr/BixY1-xWO6 nanocomposite photocatalyst of various compositions are prepared by the addition of different amounts of KBr (0.5, 1.0, 1.5, 2.0 mmol) in BixY1-xWO6 by a one-pot hydrothermal method. Furthermore, the photocatalytic properties of the as-prepared materials are analyzed by the decomposition of methylene blue under visible light illumination. In particular, the BiOBr/BixY1-xWO6 nanocomposite prepared by taking 1.5 mmol of KBr present a superior photocatalytic ability (78.3%) with the rate constant value 0.016 min-1, a low bandgap (Eg = 2.51 eV) as well as photoluminescence emission intensity than other photocatalysts prepared in this study. The radical scavenging studies revealed that OH and h+ performed an imperative role in the decomposition of methylene blue. Furthermore, the optimized photocatalyst is stable even after four cycles, which exposes the excellent photostability and reusability properties of the photocatalyst. In addition, a plausible mechanism of decomposition of methylene blue under visible light irradiation is also proposed.
Collapse
Affiliation(s)
- Thirungnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Adikesavan Selvi
- Department of Biotechnology, Thiruvalluvar University, Vellore, 632115, India
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Vasudevan Vinesh
- Department of Physics and Nanotechnology, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India
| | - Bernaurdshaw Neppolian
- Department of Physics and Nanotechnology, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India
| | - Selvaraj Vijayanand
- Department of Biotechnology, Thiruvalluvar University, Vellore, 632115, India
| | | |
Collapse
|
21
|
One-pot hydrothermal synthesis of a double Z-scheme g-C 3N 4/AgI/β-AgVO 3 ternary nanocomposite for efficient degradation of organic pollutants and DPC-Cr(VI) complex under visible-light irradiation. Photochem Photobiol Sci 2022; 21:1371-1386. [PMID: 35507304 DOI: 10.1007/s43630-022-00226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
The Z-scheme photocatalytic system provides a promising way to achieve significant photodegradation efficiency. The work embodied here describes the synthesis of highly efficient double Z-scheme g-C3N4/AgI/β-AgVO3 (g-CNAB) ternary nanocomposite using a one-pot hydrothermal route. The optical properties, phase structure, and morphology of the synthesized samples were investigated using UV-visible diffuse-reflectance spectroscopy (UV-Vis DRS), X-ray diffraction, and scanning electron microscopy, respectively. The transmission electron microscopy investigation revealed that synthesized composite material represents close interfacial interactions. X-ray photoelectron spectroscopy analysis confirms the presence of all the elements in the synthesized ternary nanocomposite materials. The photocatalytic performance of as-prepared photocatalysts has been systematically investigated using the photodegradation of a variety of pollutants, including Rhodamine B, Ciprofloxacin, and 1,5-diphenylcarbazide-Cr(VI) [DPC-Cr(VI)] complex under visible-light irradiation. Among all synthesized materials, such as g-C3N4, AgI, β-AgVO3, and ternary nanocomposites with varying loading of β-AgVO3 [g-CNAB(0.5, 1.0, 1.5, 2.0)], the photocatalyst g-CNAB(1.5) nanocomposite achieved a remarkably high photocatalytic efficiency. The quenching impact of several scavengers revealed that reactive species such as superoxide anion radical (O2·-) and hydroxyl radical (·OH) are significant in the degradation of various contaminants. Based on the characterization and application, a plausible photocatalytic mechanism has been sketched out to determine the reaction pathways involved in the degradation of pollutants present in the aqueous medium.
Collapse
|
22
|
Synthesis and investigation of structural behaviour and optical properties of BiFeO3, YMnO3 and BiFeO3-YMnO3 nanostructures. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Wang Q, Zhou X, Ji S, Li S, Gu J, Shen L, Liu P, Yin J, Xu G, Shi W. Synthesis and photocatalysis of novel Z-scheme CeO2/Ag-AgVO3 heterojunction nanofibers and their efficient antibacterial properties. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106498. [DOI: 10.1016/j.jece.2021.106498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
24
|
Alorabi AQ, Hassan MS, Algethami JS, Baghdadi NE. Synthesis and characterization of Ag-AgVO 3/Cu 2O heterostructure with improved visible-light photocatalytic performance. Sci Prog 2021; 104:368504211050300. [PMID: 34637366 PMCID: PMC10358579 DOI: 10.1177/00368504211050300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heterostructure Ag-AgVO3/Cu2O photocatalyst was prepared by the hydrothermal procedure. The prepared photocatalysts were characterized by different physico-chemical techniques. For Ag-AgVO3/Cu2O composites, AgVO3 shows the monoclinic phase whereas Ag and Cu2O show a cubic phase. SEM images of Ag-AgVO3/Cu2O composites illustrated that the surface of AgVO3 nanorods was covered by Ag and Cu2O nanoparticles. Ultra violet - visible diffuse reflectance spectra revealed that the calculated optical response of Ag-AgVO3/Cu2O composite was found to be 2.24 eV. Additionally, the composite catalyst demonstrated improved photo-efficiency for the decolorization of methylene blue dye compared to that of pristine AgVO3. The better performance of the composite sample can be ascribed to its high charge separation and inhibition in recombination of charges in Ag-AgVO3/Cu2O catalyst Finally, this heterostructure Ag-AgVO3/Cu2O catalyst demonstrated good stability which simply can be recycled a number of times with steadiness; thus, unwraps new possibilities for applications as innovative photocatalyst.
Collapse
Affiliation(s)
- Ali Q. Alorabi
- Chemistry Department, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - M. Shamshi Hassan
- Chemistry Department, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Jari S. Algethami
- Empty Quarter Research Unit, Chemistry Department, Faculty of Science and Arts at Sharurah, Najran University, Najran, Sharurah, Saudi Arabia
| | | |
Collapse
|
25
|
Di L, Sun X, Xian T, Li H, Gao Y, Yang H. Preparation of Z-scheme Au-Ag2S/Bi2O3 composite by selective deposition method and its improved photocatalytic degradation and reduction activity. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Aziz FFA, Jalil AA, Hassan NS, Fauzi AA, Azami MS. Simultaneous photocatalytic reduction of hexavalent chromium and oxidation of p-cresol over AgO decorated on fibrous silica zirconia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117490. [PMID: 34091265 DOI: 10.1016/j.envpol.2021.117490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The co-existence of heavy metals and organic compounds including Cr(VI) and p-cresol (pC) in water environment becoming a challenge in the treatment processes. Herein, the synchronous photocatalytic reduction of Cr(VI) and oxidation of pC by silver oxide decorated on fibrous silica zirconia (AgO/FSZr) was reported. In this study, the catalysts were successfully developed using microemulsion and electrochemical techniques with various AgO loading (1, 5 and 10 wt%) and presented as 1, 5 and 10-AgO/FSZr. Catalytic activity was tested towards simultaneous photoredox of hexavalent chromium and p-cresol (Cr(VI)/pC) and was ranked as followed: 5-AgO/FSZr (96/78%) > 10-AgO/FSZr (87/61%) > 1-AgO/FSZr (47/24%) > FSZr (34/20%). The highest photocatalytic activity of 5-AgO/FSZr was established due to the strong interaction between FSZr and AgO and the lowest band gap energy, which resulted in less electron-hole recombination and further enhanced the photoredox activity. Cr(VI) ions act as a bridge between the positive charge of catalyst and cationic pC in pH 1 solution which can improve the photocatalytic reduction and oxidation of Cr(VI) and pC, respectively. The scavenger experiments further confirmed that the photogenerated electrons (e-) act as the main species for Cr(VI) to be reduced to Cr(III) while holes (h+) and hydroxyl radicals are domain for photooxidation of pC. The 5-AgO/FSZr was stable after 5 cycles of reaction, suggesting its potential for removal of Cr(VI) and pC simultaneously in the chemical industries.
Collapse
Affiliation(s)
- F F A Aziz
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia.
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - M S Azami
- Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
27
|
Bavani T, Madhavan J, Prasad S, AlSalhi MS, ALJaffreh M, Vijayanand S. Fabrication of novel AgVO 3/BiOI nanocomposite photocatalyst with photoelectrochemical activity towards the degradation of Rhodamine B under visible light irradiation. ENVIRONMENTAL RESEARCH 2021; 200:111365. [PMID: 34033832 DOI: 10.1016/j.envres.2021.111365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
In the present work, a visible light driven AgVO3/BiOI nanocomposite photocatalyst with different wt % (1, 2, 3) of AgVO3 was fabricated by using facile hydrothermal method. Further, the nanocomposite was characterized by FT-IR, XRD, SEM, TEM, EDS, UV-vis DRS, photoluminescence and photoelectrochemical studies. The structural characterization showed nanorods on nanosheet surface. Among different AgVO3 loaded samples, the photocatalytic efficiency of 1 wt % AgVO3/BiOI nanocomposite was found to be comparatively higher than the pure BiOI and AgVO3. The photodegradation rate constant values of pure BiOI, AgVO3 and 1, 2, 3 wt % AgVO3/BiOI nanocomposites are 0.006, 0.0033, 0.0255, 0.01575, 0.0116 min-1 respectively. This enhanced photocatalytic activity was due to the increasing visible light absorption ability and efficient separation of the charge carriers. Thereby, the 1 wt % AgVO3/BiOI nanocomposite photocatalyst exhibited increased photodegradation activity, photostability and recyclability characteristics. The radical trapping experiment confirmed the role of OH and h+ in the photocatalytic degradation of RhB. Based on this, the probable mechanism of degradation of RhB under visible light irradiation has also been proposed. Hence, we believe it could be a promising material that can be employed for the photodegradation of organic pollutants present in wastewater.
Collapse
Affiliation(s)
- Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| | - Saradh Prasad
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia; Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia; Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Mamduh ALJaffreh
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia; Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Vijayanand
- Department of Biotechnology, Thiruvalluvar University, Vellore, 632115, India
| |
Collapse
|
28
|
Zhang R, Cai L, Cai Y, Han Q, Li Y, Zhang T, Liu Y, Zeng K, Zhao C, Yu J, Yang Z. Lamellar insert SnS2 anchored on BiOBr for enhanced photocatalytic degradation of organic pollutant under visible-light. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Li H, Liu X, Feng H, Zhao J, Lu P, Fu M, Guo W, Zhao Y, He Y. NH 2-MIL-125(Ti) with transient metal centers via novel electron transfer routes for enhancing photocatalytic NO removal and H 2 evolution. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01008e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transient YbII/III center coordinated with –NH2 of NH2-MIL-125(Ti) to form a ligand metal charge transfer (LLCMT) pathway, which promoted the rapid transfer of electrons, thereby enhancing photocatalytic NO removal and hydrogen production.
Collapse
Affiliation(s)
- Houfan Li
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xingyan Liu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Huan Feng
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jia Zhao
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Peng Lu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Min Fu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Weiwei Guo
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yi Zhao
- BayRay Innovation Center, Shenzhen Bay Laboratory (SZBL), Guangdong 518000, China
| | - Youzhou He
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|