1
|
Wei J, Luo J, Chen Y, Wang F, Yang F, Li Y, Zhu Z, Huang Z, Li X, Luo M. Long-term exposure to outdoor air pollution correlated with overweight/obesity in children and adolescents: A cross-sectional real-world study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125912. [PMID: 40414129 DOI: 10.1016/j.jenvman.2025.125912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Air pollution has emerged as an essential risk factor for overweight and obesity. However, the combined effects of multiple air pollutants on overweight/obesity development in children and adolescents are not fully understood. In this study, a total of 189,448 children and adolescents in China were included. Logistics, weighted quantile sum, quantile g-computation, and bayesian kernel machine regression models were used to systematically assess the association between long-term outdoor air pollution exposure and overweight/obesity, and identified the major contributors. Our results revealed a significantly positive association of PM2.5, PM10, CO, and NO2 concentrations with overweight/obesity risk. Multi-pollutant models consistently demonstrated a positive association between the air pollutant mixture and the risk of overweight/obesity (OR: 1.825; 95 % CI: 1.036, 2.614). PM2.5 and PM10 were identified as the most significant contributors. Furthermore, we found significantly positive overall effects and interactions of these pollutants on an additive risk of overweight/obesity. The effects of air pollutants on overweight/obesity were pronounced in boys, rural residents, smokers, and primary school students. Our findings demonstrated that long-term exposure to air pollutants, particularly PM2.5 and PM10 was positively linked with an increased risk of overweight/obesity in children and adolescents. The cross-sectional design and potential confounders limited the ability to establish causality. Prospective cohort studies and specific mechanism investigations are needed to provide more precise and robust evaluations in the future. Coordinated policies to reduce air pollutants and mitigate their combined effects are essential for addressing this public health issue.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yanhua Chen
- Department of School Health, Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Fei Wang
- Department of School Health, Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, 421001, China
| | - Yamei Li
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, 421001, China
| | - Zhaozhong Zhu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, 421001, China
| | - Zhihang Huang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xiaojun Li
- Department of School Health, Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China.
| | - Miyang Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
2
|
Nicolaou L, Sylvies F, Veloso I, Lord K, Chandyo RK, Sharma AK, Shrestha LP, Parker DL, Thygerson SM, DeCarlo PF, Ramachandran G, Checkley W. Brick kiln pollution and its impact on health: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 257:119220. [PMID: 38797466 DOI: 10.1016/j.envres.2024.119220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Brick kiln emissions adversely affect air pollution and the health of workers and individuals living near the kilns; however, evidence of their impacts remains limited. We conducted a systematic review of brick kiln pollution (emissions, source contributions and personal exposures) and its effects on health. We extracted articles from electronic databases and through manual citation searching. We estimated pooled, sample-size-weighted means and standard deviations for personal exposures by job type; computed mean emission factors and pollutant concentrations by brick kiln design; and meta-analyzed differences in means or proportions for health outcomes between brick kiln workers and controls or for participants living near or far away from kilns. We identified 104 studies; 74 were conducted in South Asia. The most evaluated pollutants were particulate matter (PM; n = 48), sulfur dioxide (SO2; n = 24) and carbon monoxide (CO; n = 22), and the most evaluated health outcomes were respiratory health (n = 34) and musculoskeletal disorders (n = 9). PM and CO emissions were higher among traditional than improved brick kilns. Mean respirable silica exposures were only measured in 4 (4%) studies and were as high as 620 μg/m3, exceeding the NIOSH recommended exposure limit by a factor of over 12. Brick kiln workers had consistently worse lung function, more respiratory symptoms, more musculoskeletal complaints, and more inflammation when compared to unexposed participants across studies; however, most studies had a small sample size and did not fully describe methods used for sampling or data collection. On average, brick kiln workers had worse health outcomes when compared to unexposed controls but study quality supporting the evidence was low. Few studies reported silica concentrations or personal exposures, but the few that did suggest that exposures are high. Further research is needed to better understand the relationship between brick kiln pollution and health among workers, and to evaluate exposure mitigation strategies.
Collapse
Affiliation(s)
- Laura Nicolaou
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Fiona Sylvies
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Isabel Veloso
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Katherine Lord
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ram K Chandyo
- Kathmandu Medical College, Sinamangal, Kathmandu, Nepal
| | - Arun K Sharma
- Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Laxman P Shrestha
- Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - David L Parker
- University of Minnesota School of Public Health, Minneapolis, USA
| | | | - Peter F DeCarlo
- Department of Environmental Health and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA.
| |
Collapse
|
3
|
Chen L, Yuan W, Geng M, Xu R, Xing Y, Wen B, Wu Y, Ren X, Shi Y, Zhang Y, Song X, Qin Y, Wang R, Jiang J, Dong Z, Liu J, Guo T, Song Z, Wang L, Ma Y, Dong Y, Song Y, Ma J. Differentiated impacts of short-term exposure to fine particulate constituents on infectious diseases in 507 cities of Chinese children and adolescents: A nationwide time-stratified case-crossover study from 2008 to 2021. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172299. [PMID: 38614340 DOI: 10.1016/j.scitotenv.2024.172299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
This study assesses the association of short-term exposure to PM2.5 (particles ≤2.5 μm) on infectious diseases among Chinese children and adolescents. Analyzing data from 507 cities (2008-2021) on 42 diseases, it focuses on PM2.5 components (black carbon (BC), ammonium (NH4+), inorganic nitrate (NO3-), organic matter (OM), and sulfate (SO42-)). PM2.5 constituents significantly associated with incidence. Sulfate showed the most substantial effect, increasing all-cause infectious disease risk by 2.72 % per interquartile range (IQR) increase. It was followed by BC (2.04 % increase), OM (1.70 %), NO3- (1.67 %), and NH4+ (0.79 %). Specifically, sulfate and BC had pronounced impacts on respiratory diseases, with sulfate linked to a 10.73 % increase in seasonal influenza risk and NO3- to a 16.39 % rise in tuberculosis. Exposure to PM2.5 also marginally increased risks for gastrointestinal, enterovirus, and vectorborne diseases like dengue (7.46 % increase with SO42-). Sexually transmitted and bloodborne diseases saw an approximate 6.26 % increase in incidence, with specific constituents linked to diseases like hepatitis C and syphilis. The study concludes that managing PM2.5 levels could substantially reduce infectious disease incidence, particularly in China's middle-northern regions. It highlights the necessity of stringent air quality standards and targeted disease prevention, aligning PM2.5 management with international guidelines for public health protection.
Collapse
Affiliation(s)
- Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China; UNESCO Chair on Global Health and Education of Peking University, Beijing 100191, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Mengjie Geng
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Bo Wen
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Yao Wu
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Xiang Ren
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yue Shi
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Xinli Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yang Qin
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - RuoLin Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Ziqi Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Zhiying Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Liping Wang
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yinghua Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China; UNESCO Chair on Global Health and Education of Peking University, Beijing 100191, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China; UNESCO Chair on Global Health and Education of Peking University, Beijing 100191, China.
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China; UNESCO Chair on Global Health and Education of Peking University, Beijing 100191, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China; UNESCO Chair on Global Health and Education of Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Chen L, Qin Y, Zhang Y, Song X, Wang R, Jiang J, Liu J, Guo T, Yuan W, Song Z, Dong Y, Song Y, Ma J. Association of the external environmental exposome and obesity: A comprehensive nationwide study in 2019 among Chinese children and adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172233. [PMID: 38615759 DOI: 10.1016/j.scitotenv.2024.172233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Children and adolescents are particularly vulnerable to the effects of various environmental factors, which could disrupt growth processes and potentially lead to obesity. Currently, comprehensive and systematic assessments of these environmental exposures during developmental periods are lacking. Therefore, this study aims to evaluate the association between external environmental exposures and the incidence of obesity in children and adolescents. METHODS Data was collected from the 2019 Chinese National Survey on Students' Constitution and Health, including 214,659 Han children aged 7 to 19. Body Mass Index (BMI) and BMI-for-age z-score (zBMI) were the metrics used to assess overweight and obesity prevalence. The study assessed 18 environmental factors, including air pollutants, natural space, land cover, meteorological conditions, built environment, road conditions, and artificial light at night. Exposome-wide association study (ExWAS) to analyze individual exposures' associations with health outcomes, and Weighted Quantile Sum (WQS) to assess cumulative exposure effects. RESULTS Among the children and adolescents, there were 24.2 % participants classified as overweight or obesity. Notably, 17 out of 18 environmental factors exhibited significant associations with zBMI and overweight/obesity. Seven air pollutants, road conditions, and built density were positively correlated with higher zBMI and obesity risk, while NDVI, forests, and meteorological factors showed negative correlations. Co-exposure analysis highlighted that SO2, ALAN, PM10, and trunk road density significantly increased zBMI, whereas rainfall, grassland, and forest exposure reduced it. Theoretically reduction in the number and prevalence of cases was calculated, indicating potential reductions in prevalence of up to 4.51 % for positive exposures and 5.09 % for negative exposures. Notably, substantial reductions were observed in regions with high pollution levels. CONCLUSION This large-scale investigation, encompassing various environmental exposures in schools, highlights the significant impact of air pollution, road characteristics, rainfall, and forest coverage on childhood obesity.
Collapse
Affiliation(s)
- Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yang Qin
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Xinli Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - RuoLin Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Zhiying Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China.
| |
Collapse
|
5
|
Jo HH, Kang Y, Kim S. Synergistic approaches to elevate indoor air quality: A holistic examination of classroom refinement, air exchange optimization, and flooring material impact. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123920. [PMID: 38582187 DOI: 10.1016/j.envpol.2024.123920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
This research endeavors to elevate indoor air quality within aging school environments by concentrating on refining interior finishing materials and windows. Renovations, encompassing window and floor remodeling in classrooms, aim to mitigate particulate matter (PM) infiltration and enhance air exchange rates. Utilizing SPS30 sensors for the analysis of 0.3-2.5 μm particles, with a focus on their implications for human health, the study evaluated air exchange rates, deposition rates, infiltration rates, and particle generation during classroom activities. Post-renovation results demonstrated a noteworthy decrease in air exchange rates, indicating an enhancement in airtightness. The investigation delves into particle generation with various flooring materials, accentuating the importance of opting for durable and low-particle-generating alternatives. Health risk assessments, considering multiple exposure routes (inhalation, dermal contact, and ingestion), revealed reduced risks post-renovation, particularly for children. To further optimize indoor air quality, the study suggests the implementation of air purification systems. Examination of PM generation during student activities showcased a substantial reduction post-renovation. This study underscores the positive influence of architectural enhancements on indoor air quality while acknowledging the necessity for holistic solutions and continuous research.
Collapse
Affiliation(s)
- Ho Hyeon Jo
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yujin Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Nakhjirgan P, Kashani H, Kermani M. Exposure to outdoor particulate matter and risk of respiratory diseases: a systematic review and meta-analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:20. [PMID: 38153542 DOI: 10.1007/s10653-023-01807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
According to epidemiological studies, particulate matter (PM) is an important air pollutant that poses a significant threat to human health. The relationship between particulate matter and respiratory diseases has been the subject of numerous studies, but these studies have produced inconsistent findings. The purpose of this systematic review was to examine the connection between outdoor particulate matter (PM2.5 and PM10) exposure and respiratory disorders (COPD, lung cancer, LRIs, and COVID-19). For this purpose, we conducted a literature search between 2012 and 2022 in PubMed, Web of Science, and Scopus. Out of the 58 studies that were part of the systematic review, meta-analyses were conducted on 53 of them. A random effect model was applied separately for each category of study design to assess the pooled association between exposure to PM2.5 and PM10 and respiratory diseases. Based on time-series and cohort studies, which are the priorities of the strength of evidence, a significant relationship between the risk of respiratory diseases (COPD, lung cancer, and COVID-19) was observed (COPD: pooled HR = 1.032, 95% CI: 1.004-1.061; lung cancer: pooled HR = 1.017, 95% CI: 1.015-1.020; and COVID-19: pooled RR = 1.004, 95% CI: 1.002-1.006 per 1 μg/m3 increase in PM2.5). Also, a significant relationship was observed between PM10 and respiratory diseases (COPD, LRIs, and COVID-19) based on time-series and cohort studies. Although the number of studies in this field is limited, which requires more investigations, it can be concluded that outdoor particulate matter can increase the risk of respiratory diseases.
Collapse
Affiliation(s)
- Pegah Nakhjirgan
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Anita WM, Ueda K, Uttajug A, Seposo XT, Takano H. Association between Long-Term Ambient PM2.5 Exposure and under-5 Mortality: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3270. [PMID: 36833969 PMCID: PMC9961703 DOI: 10.3390/ijerph20043270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Studies have established a link between exposure to fine particles (PM2.5) and mortality in infants and children. However, few studies have explored the association between post-birth exposure to PM2.5 and under-5 mortality. We conducted a scoping review to identify relevant epidemiological evidence on the association between post-birth ambient PM2.5 exposure and under-5 mortality. We searched PubMed and Web of Science for articles published between 1970 and the end of January 2022 that explicitly linked ambient PM2.5 and under-5 mortality by considering the study area, study design, exposure window, and child age. Information was extracted on the study characteristics, exposure assessment and duration, outcomes, and effect estimates/findings. Ultimately, 13 studies on infant and child mortality were selected. Only four studies measured the effect of post-birth exposure to PM2.5 on under-5 mortality. Only one cohort study mentioned a positive association between post-birth ambient PM2.5 exposure and under-5 mortality. The results of this scoping review highlight the need for extensive research in this field, given that long-term exposure to ambient PM2.5 is a major global health risk and child mortality remains high in some countries.
Collapse
Affiliation(s)
- Wahida Musarrat Anita
- Graduate School of Global Environmental Studies (GSGES), Kyoto University, Kyoto 615-8540, Japan
| | - Kayo Ueda
- Graduate School of Global Environmental Studies (GSGES), Kyoto University, Kyoto 615-8540, Japan
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Hokkaido 060-8638, Japan
| | - Athicha Uttajug
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Hokkaido 060-8638, Japan
| | - Xerxes Tesoro Seposo
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Hokkaido 060-8638, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies (GSGES), Kyoto University, Kyoto 615-8540, Japan
- Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| |
Collapse
|
8
|
Su M, Qi H, Huang Q, Wang L, Guo X, Wang Q. Acute arsenic exposure exacerbates lipopolysaccharide-induced lung injury possibly by compromising the integrity of the lung epithelial barrier in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159561. [PMID: 36265643 DOI: 10.1016/j.scitotenv.2022.159561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Inhalation of large amounts of arsenic can damage the respiratory tract and may exacerbate the development of bacterial pneumonia, but the exact mechanism remains unclear. In this study, male Wistar rats were randomly divided into control, arsenic trioxide (16.0 μg/kg ATO), lipopolysaccharide (0.5 mg/kg LPS), and ATO combined with LPS (16.0 μg/kg ATO + 0.5 mg/kg LPS) groups. Blood and lung tissue samples were collected from each group 12 h after exposure. The results showed that exposure to ATO or LPS alone produced different effects on leukocytes and inflammatory factors, while combined exposure significantly increased serum interleukin-6, interleukin-10, lung water content, lung lavage fluid protein, and p38 protein phosphorylation levels. Alveolar interstitial thickening, alveolar membrane edema, alveolar type I and II cell matrix vacuolization, and nuclear pyknosis were observed in rats exposed to either ATO or LPS. More severe ultrastructural changes were found in the combined exposure group, and chromatin splitting was observed in alveolar type I cells. Lanthanum nitrate particles leaked from the alveolar vascular lumen in the ATO-exposed group, whereas in the combined exposure group, Evans Blue levels were increased and lanthanum nitrate particles were present in the lung parenchyma. Claudin-3 protein expression increased and claudin-4 expression decreased after ATO or LPS exposure, while claudin-18 expression was unchanged. The changes in claudin-3 and claudin-4 protein expression were further exacerbated by combined exposure. In conclusion, these results suggest that inhalation of ATO may exacerbate the development of bacterial pneumonia and that common mechanisms may exist to synergistically disrupt epithelial barrier integrity.
Collapse
Affiliation(s)
- Mingxing Su
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing 100071, China; The Northern District of PLA General Hospital, Beijing 100094, China
| | - Huixiu Qi
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing 100071, China; School of Public Health, Hebei University, Baoding 071000, China
| | - Qingzhen Huang
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing 100071, China
| | - Lili Wang
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing 100071, China
| | - Xueqi Guo
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing 100071, China
| | - Qiang Wang
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing 100071, China.
| |
Collapse
|
9
|
Ziou M, Tham R, Wheeler AJ, Zosky GR, Stephens N, Johnston FH. Outdoor particulate matter exposure and upper respiratory tract infections in children and adolescents: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 210:112969. [PMID: 35183515 DOI: 10.1016/j.envres.2022.112969] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND While the relationship between outdoor particulate matter (PM) and lower respiratory tract infections in children and adolescents is accepted, we know little about the impacts of outdoor PM on the risk of developing or aggravating upper respiratory tract infections (URTIs). METHODS We aimed to review the literature examining the relationship between outdoor PM exposure and URTIs in children and adolescents. A systematic search of EMBASE, MEDLINE, PubMed, Scopus, CINAHL and Web of Science databases was undertaken on April 3, 2020 and October 27, 2021. Comparable short-term studies of time-series or case-crossover designs were pooled in meta-analyses using random-effects models, while the remainder of studies were combined in a narrative analysis. Quality, risk of bias and level of evidence for health effects were appraised using a combination of emerging frameworks in environmental health. RESULTS Out of 1366 articles identified, 34 were included in the systematic review and 16 of these were included in meta-analyses. Both PM2.5 and PM10 levels were associated with hospital presentations for URTIs (PM2.5: RR = 1.010, 95%CI = 1.007-1.014; PM10: RR = 1.016, 95%CI = 1.011-1.021) in the meta-analyses. Narrative analysis found unequivocally that total suspended particulates were associated with URTIs, but mixed results were found for PM2.5 and PM10 in both younger and older children. CONCLUSION This study found some evidence of associations between PM and URTIs in children and adolescents, the relationship strength increased with PM10. However, the number of studies was limited and heterogeneity was considerable, thus there is a need for further studies, especially studies assessing long-term exposure and comparing sources.
Collapse
Affiliation(s)
- Myriam Ziou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Rachel Tham
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Amanda J Wheeler
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Graeme R Zosky
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicola Stephens
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|