1
|
Chen T, Zhang Y. A novel bioaccessibility prediction method for complex petroleum hydrocarbon mixtures in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41197-41207. [PMID: 38847953 DOI: 10.1007/s11356-024-33683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/11/2024] [Indexed: 06/21/2024]
Abstract
More evidence shows that bioaccessibility instead of total concentrations based on exhaustive extraction methods can better reflect the actual risk level of petroleum hydrocarbon contaminated sites, so it is essential to establish an effective assessment method for bioaccessibility. This study utilized Tenax extraction, butanol extraction, hydroxypropyl-β-cyclodextrin (HPCD) extraction, and a composite extraction method involving HPCD with LMWOAs (citric acid, CA) and surfactants (rhamnolipid, RL; Tween80, TW80; sodium dodecyl sulfate, SDS) at varying concentrations. These methods were employed to predict the bioaccessibility of earthworms to soil at different aging time of petroleum hydrocarbons. The results showed that traditional extraction methods such as Tenax 6h extraction and n-butanol extraction were ineffective in evaluating petroleum hydrocarbons' bioaccessibility. In contrast, the composite extraction of HPCD and solubilizer enhanced the extraction efficiency of HPCD greatly, and the extraction results showed a significant positive correlation with earthworm accumulation. By the comparison of the extraction results of different fractions of petroleum hydrocarbons, heavy fractions of petroleum hydrocarbons (C29-C40) are essential factors affecting chemical extraction effects. The correlation coefficients of four composite extraction methods and total petroleum hydrocarbons (TPH) of earthworm accumulation by linear regression analysis ranged from 1.1797 to 1.7990, and the slopes ranged from 0.8727 to 0.9792. Among them, the combined extraction method of 50 mmol/L HPCD and 0.5 mmol/L rhamnolipid had the best effect (r2 = 0.9792, slope = 1.1797), which could be used as an evaluation method suitable for the bioaccessibility of petroleum hydrocarbons in soil. This study could provide a new method for evaluating the bioaccessibility of organic pollutants and technically supporting risk assessment and bioremediation of complex petroleum hydrocarbons in soil.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yafu Zhang
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
2
|
Fan YH, Qin SB, Mou XX, Li XS, Qi SH. Accurate prediction bioaccessibility of PAHs in soil-earthworm system by novel magnetic solid phase extraction technique. CHEMOSPHERE 2024; 355:141821. [PMID: 38548073 DOI: 10.1016/j.chemosphere.2024.141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
Conventional chemical extraction methods may lead to overestimate or underestimate bioaccessibility due to their inability to provide realistic kinetic information regarding PAHs in soils. In this study, we propose the use of magnetic solid phase extraction (MSPE) technique for assessing the bioaccessibility of PAHs in the soil-earthworm system. Firstly, a novel polydopamine-coated magnetic core-shell microspheres (Fe3O4-C16@PDA) was developed by a one-pot sol-gel and self-polymerization method. The PDA coatings not only enhance the hydrophilicity of material surfaces but also exhibit excellent biocompatibility. The maximum adsorption capacity of Fe3O4-C16@PDA for 16 PAHs was 52.72 mg g-1, indicating that the proposed material fulfills the assessment requirements for highly contaminated soil. To compare the measurement of PAHs and their uptake by earthworms (Eisenia fetida), experiments were conducted using four different soils with varying properties. The desorption kinetics data obtained from these experiments demonstrated that the capability of the MSPE in accurately predicting the bioavailable portions of PAHs. After a 28-day exposure, the best predictor of bioavailable PAHs in earthworms was MSPE method exhibited the highest correlation coefficient (R2 > 0.90), and its slopes in the four soils were 0.972, 0.961, 1.012, and 0.962, respectively, all close to 1. These results demonstrate that the MSPE method successfully mimics the conditions encountered in soil-earthworm systems and effectively assess bioaccessibility of PAHs in soils.
Collapse
Affiliation(s)
- Yu-Han Fan
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Shi-Bin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Xiao-Xuan Mou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Xiao-Shui Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Shi-Hua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
3
|
Kong J, Cao X, Huang W, Li C, Xian Q, Yang S, Li S, Sun C, He H. Predicting the bioavailability of nitro polycyclic aromatic hydrocarbons in sediments: ZIF-8/h-BN solid-phase microextraction versus Tenax extraction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120896. [PMID: 36535426 DOI: 10.1016/j.envpol.2022.120896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The occurrence of nitrated polycyclic aromatic hydrocarbons (NPAHs) in sediments has been widely reported, but research on NPAH bioavailability is lacking. In this study, a self-made zeolite imidazolate framework-8/hexagonal boron nitride (ZIF-8/h-BN) solid-phase microextraction (SPME) fiber and commercial Tenax are compared as efficient tools to predict the bioavailability of NPAHs in sediments with bioassays using Cipangopaludina chinensis. During the process of SPME, the NPAH concentrations on the ZIF-8/h-BN fibers reached extraction equilibrium after 72 h. The fiber extraction of NPAHs in sediments was well-fitted by the pseudo first-order kinetic model with a rate constant of 2 × 10-2 h-1 (R2 > 0.98). The extraction rates ranking of NPAHs in sediments was 2-nitrobiphenyl>1-nitropyrene>5-nitroacenaphthene>2-nitrofluorene. Compared with SPME, NPAH concentrations reached equilibrium after 168 h for the Tenax extraction. The orders of magnitude of fast, slow, and very slow desorption rate constants were 10-1, 10-2, and 10-4, respectively. At extraction equilibrium (168 h), the SPME was close to the bioavailability of the NPAHs in sediments to Cipangopaludina chinensis with a slope statistically approximated to one. In addition, the linear regression for SPME (R2 = 0.7285) was slightly higher than that of the Tenax extraction (R2 = 0.7168) over a short time (6 h). This could be because the coating material of ZIF-8/h-BN can rapidly adsorb freely dissolved NPAHs, and the SPME fibers can accurately predict the bioaccumulated concentrations of NPAHs in exposed organisms by measuring the concentration of NPAHs in the pore water of sediment. This study provides a time-saving and easy procedure to predict the bioavailability of NPAHs in sediments.
Collapse
Affiliation(s)
- Jijie Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China; School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xiaoyu Cao
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China
| | - Wen Huang
- Kaver Scientific Instruments, Co., Ltd, Nanjing, 210000, PR China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China; School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Qiming Xian
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, PR China.
| |
Collapse
|
4
|
Esmaeili A, Knox O, Leech C, Hasenohr S, Juhasz A, Wilson SC. Modelling polycyclic aromatic hydrocarbon bioavailability in historically contaminated soils with six in-vitro chemical extractions and three earthworm ecotypes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157265. [PMID: 35817096 DOI: 10.1016/j.scitotenv.2022.157265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Accurate prediction of organic contaminant bioavailability for risk assessment in ecological applications is hindered by limited validation on relevant bioassay species. Here, six in-vitro chemical extraction methods (butanol, non-buffered and buffered hydroxypropyl-β-cyclodextrin (HPCD, Buf-HPCD), Tenax, potassium persulfate oxidation, polyoxymethylene solid phase extraction (POM)) were tested for PAH bioaccumulation prediction in three earthworm ecotypes with dissimilar exposures, Amynthas sp., Eisenia fetida, and Lumbricus terrestris, in historically contaminated soils from manufactured gas plant (MGP) sites. Extractions were compared directly and modelled in a calculation approach using equilibrium partitioning theory (EqPT) with a novel combination of different organic carbon/octanol-water partitioning parameters (KOC and KOW). In the direct comparison approach Buf-HPCD showed the closest prediction of accumulation for burrowing Amynthas sp. and L. terrestris (within 1.5 and 3.1, respectively), but Tenax and POM showed the closest approximation for E. fetida (within 1.1 and 0.9, respectively). The optimum method for predicting PAH bioaccumulation in the calculation approach depended on earthworm species and the partitioning parameters used in equations of the four models, but overall POM, which was independent of KOC, showed the closest approximation of accumulation, within a factor of 2.5 across all species. This work effectively identifies the optimum in-vitro based approaches for PAH bioavailability prediction in earthworms as a model soil health indicator for ecological risk assessment within regulatory and remediation decision frameworks.
Collapse
Affiliation(s)
- Atefeh Esmaeili
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| | - Oliver Knox
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Calvin Leech
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Stefan Hasenohr
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Susan C Wilson
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|