1
|
Ali MA, Nafees M, Alomrani SO, Li Y, Wang Q, Alshehri MA, Al-Ghanim KA, Ali S, Li F. Novel nanocomposite and biochar insights to boost rice growth and alleviation of Cd toxicity. Sci Rep 2024; 14:23158. [PMID: 39367099 PMCID: PMC11452507 DOI: 10.1038/s41598-024-73635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Cadmium (Cd) is an unessential and pervasive contaminant in agricultural soil, eventually affecting the food and instigating health issues. The implication of nanocomposites in agriculture attained significant attention to drive food security. Nanocomposites possess exceptional characteristics to stun the challenges of chemical fertilizers that can enhance plant yield and better nutrient bioavailability. Similarly, biochar has the ability to immobilize Cd in soil by reducing mobility and bioavailability. Rice husk biochar is produced at high temperature pyrolysis under anoxic conditions and a stable carbon-rich material is formed. To strive against this issue, rice plants were subjected to Cd (15, 20 mg kg- 1) stress and treated with alone/combined Ca + Mg (25 mg L- 1) nanocomposite and rice husk biochar. In our study, growth and yield traits showed the nurturing influence of Ca + Mg nanocomposite and biochar to improve rice defence mechanism by reducing Cd stress. Growth parameters root length 28%, shoot length 34%, root fresh weight 19%, shoot fresh weight 16%, root dry weight 9%, shoot dry weight 8%, number of tillers 32%, number of grains 20%, and spike length 17% were improved with combined application of Ca + Mg and biochar, with Cd (20 mg kg- 1), rivalled to alone biochar. Combined Ca + Mg and biochar application increased the SPAD 23%, total chlorophyll 26%, a 19%, b 18%, and carotenoids 15%, with Cd (20 mg kg- 1), rivalled to alone biochar. MDA 15%, H2O2 13%, and EL 10% were significantly regulated in shoots with combined Ca + Mg and biochar application with Cd (20 mg kg- 1) compared to alone biochar. POD 22%, SOD 17%, APX 18%, and CAT 9% were increased in shoots with combined Ca + Mg and biochar application with Cd (20 mg kg- 1) compared to alone biochar. Cd uptake in roots 13%, shoots 14%, and grains 21% were minimized under Cd (20 mg kg- 1) with combined Ca + Mg and B. pumilus application, compared to alone biochar. Subsequently, combined Ca + Mg and biochar application is a sustainable solution to boost crop production under Cd stress.
Collapse
Affiliation(s)
- Muhammad Azhar Ali
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao, 266100, China
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 21023, Jiangsu, China
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran, 66252, Saudi Arabia
| | - Yuanyuan Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao, 266100, China
| | - Qian Wang
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao, 266100, China
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan, People's Republic of China.
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
2
|
Xu Z, Peng S, Pei L, Zhou K, Wang X. Integrated Analysis of Pollution Characteristic and Ecotoxicological Effect Reveals the Fate of Lithium in Soil-Plant Systems: A Challenge to Global Sustainability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15755-15765. [PMID: 39163250 DOI: 10.1021/acs.est.4c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Lithium, as an emerging contaminant, lacks sufficient information regarding its environmental and ecotoxicological implications within soil-plant systems. Employing maize, wheat, pea, and water spinach, we conducted a thorough investigation utilizing a multispecies, multiparameter, and multitechnique approach to assess the pollution characteristics and ecotoxicological effects of lithium. The findings suggested that lithium might persist in an amorphous state, altering surface functional groups and chemical bonds, although semiquantitative analysis was unattainable. Notably, lithium demonstrated high mobility, with a mild acid-soluble fraction accounting for 29.66-97.02% of the total, while a minor quantity of exogenous lithium tended to be a residual fraction. Plant analysis revealed that in 10-80 mg Li/kg soils lithium significantly enhanced certain growth parameters of maize and pea, and the calculated LC50 values for aerial part length across the four plant species varied from 173.58 to 315.63 mg Li/kg. Lithium accumulation in the leaves was up to 1127.61-4719.22 mg/kg, with its inorganic form accounting for 18.60-94.59%, and the cytoplasm fraction (38.24-89.70%) predominantly harbored lithium. Furthermore, the model displayed that growth stimulation might be attributed to the influence of lithium on phytohormone levels. Water spinach exhibited superior accumulation capacity and tolerance to lithium stress and was a promising candidate for phytoremediation strategies. Our findings contribute to a more comprehensive understanding of lithium's environmental behavior within soil-plant systems, particularly within the context of global initiatives toward carbon neutrality.
Collapse
Affiliation(s)
- Zhinan Xu
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China
| | - Si Peng
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China
| | - Luyao Pei
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China
| | - Kecen Zhou
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China
| | - Xiangrong Wang
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China
| |
Collapse
|
3
|
Zheng S, Wu B, Yang P, Li J, Shangguan Y, Hu J. Mercapto-functionalized palygorskite modified the growth of Ligusticum Chuanxiong and restrained the Cd migration in the soil-plant system. CHEMOSPHERE 2024; 362:142510. [PMID: 38908445 DOI: 10.1016/j.chemosphere.2024.142510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Ligusticum Chuanxiong is an essential medicinal and edible plant, but it is highly susceptible to the enrichment of soil Cadmium (Cd), which seriously affects its medical safety. However, the control of Cd uptake by Ligusticum Chuanxiong is little reported. In this study, we reported that a green Mercapto-functionalized palygorskite (MPAL) effectively promoted Ligusticum Chuanxiong growth, and restrained the Cd uptake by Ligusticum Chuanxiong both in the mildly contaminated soil (M-Soil) and severely contaminated soil (S-Soil). The experimental results demonstrated that the application of MPAL significantly increased the biomass and antioxidant enzyme activity of Ligusticum Chuanxiong. In the M-Soil, the Cd content in the roots, stems, and leaves of Ligusticum Chuanxiong decreased markedly by 82.46-86.66%, 64.17-71.73%, and 64.94-76.66%, respectively, after the MPAL treatment. In the S-Soil, MPAL application decreased the Cd content in roots, stems, and leaves by 89.43-98.92%, 24.19-86.22%, and 67.14-77.90%, respectively. Based on Diethylenetriamine Pentaacetic Acid (DTPA) extraction, the immobilization efficiency of MPAL for Cd in soils ranged from 22.01% to 77.04%. Additionally, the HOAc extractable Cd was transformed into reducible and oxidizable fractions. Furthermore, MPAL enhanced the activities of soil alkaline phosphatase, and urease, but decreased sucrase activity. Environmental toxicological analysis indicated that MPAL reduced the potential ecological risk of Cd in the soil. These findings revealed that MPAL can effectively reduce Cd accumulation in Ligusticum Chuanxiong and promote plant growth, suggesting its potential as a viable amendment for remediating Cd-contaminated soils.
Collapse
Affiliation(s)
- Shuai Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Bin Wu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China; Agricultural Quality Standards and Testing Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet, 850000, PR China.
| | - Peng Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Jia Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuxian Shangguan
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, PR China
| | - Junqi Hu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| |
Collapse
|
4
|
Liu G, Tu C, Li Y, Yang S, Wang Q, Wu X, Zhou T, Luo Y. Rapidly reducing cadmium from contaminated farmland soil by novel magnetic recyclable Fe 3O 4/mercapto-functionalized attapulgite beads. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124056. [PMID: 38677464 DOI: 10.1016/j.envpol.2024.124056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Reducing cadmium (Cd) content from contaminated farmland soils remains a major challenge due to the difficulty in separating commonly used adsorbents from soils. This study synthesized novel millimeter-sized magnetic Fe3O4/mercapto-functionalized attapulgite beads (MFBs) through a facile one-step gelation process incorporating alginate. The MFBs inherit the environmental stability of alginate and enhance its mechanical strength by hybridizing Fe3O4 and clay mineral components. MFBs can be easily separated from flooded soils by magnets. When applied to 12 Cd-polluted paddy soils and 14 Cd-polluted upland soils, MFBs achieved Cd(II) removal rates ranging from 16.9% to 62.2% and 9.8%-54.6%, respectively, within a 12-h period. The MFBs predominantly targeted the exchangeable and acid soluble, and reducible fractions of Cd, with significantly enhanced removal efficiencies in paddy soils compared to upland soils. Notably, MFBs exhibited superior adsorption performance in soils with lower pH and organic matter (OM) content, where the bioavailability and mobility of Cd are heightened. The reduction of Cd content by MFBs is a sustainable and safe method, as it permanently removes the bioavailable Cd from soil, rather than temporarily reducing its bioavailability. The functional groups such as -SH, -OH, present in attapulgite and alginate of MFBs, played a crucial role in Cd(II) adsorption. Additionally, attapulgite and zeolite provided a porous matrix structure that further enhanced Cd(II) adsorption. The results of X-ray photoelectron spectroscopy suggested that both chemical precipitation and surface complexation contributed to Cd(II) removal. The MFBs maintained 87.6% Cd removal efficiency after 5 regeneration cycles. The surface of the MFBs exposed new adsorption sites and increased the specific surface area during multiple cycles with Cd-contaminated soil. This suggests that MFBs treatment with magnetic retrieval is a potentially effective pathway for the rapid removal of Cd from contaminated farmland soils.
Collapse
Affiliation(s)
- Guoming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chen Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
| | - Shuai Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qihao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinyou Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
5
|
Xie Y, Zhao Y, Li Y, Wang Y, Pei J, Xu H. Cadmium induced changes in rhizosphere microecology to enhance Cd intake by Ligusticum sinense cv. Chuanxiong. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133851. [PMID: 38394901 DOI: 10.1016/j.jhazmat.2024.133851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
As the most famous and widely used traditional Chinese medicine (TCM), Ligusticum sinense cv. Chuanxiong (L. Chuaniong) has been affected by cadmium (Cd) exceeding with high ability of Cd accumulation. There is relatively little research on Cd absorption and storage process in L. Chuanxiong, which is an important reason for the poor remediation efficiency. Hence, this study takes L. Chuanxiong as the point of penetration to explore how L. Chuanxiong affects rhizobacteria through root exudates to alter soil Cd intake, as well as to explore the migration and storage of Cd in its body with 0.10 (T0), 5.00 (T5), 10.00 (T10) mg/kg Cd contaminations. The results showed that the relative abundance of amino acids and phospholipids secreted from L. Chuanxiong root noticeably increased with increasing Cd levels, which directly activated soil Cd or extremely significantly (P < 0.01) recruited bacteria such as Bacillus, Arthrobacter to indirectly increase Cd availability. Under the interaction of root exudates and rhizobacteria, Cd bioavailability increased by 80.00% in rhizosphere soil and Cd accumulation in L. Chuanxiong increased 5.44-6.65 mg/kg. Cd subcellular distribution analysis demonstrated that Cd was mainly stored in the root (10-fold more than in the leaf), whose Cd content was cytoderm>cytoplasm>organelle in tissues. The sequential extraction results found that non-soluble phosphate and protein-chelated Cd dominated (85.00-90.00%) in the cell, while Cd cheated with alcohol soluble protein, amino acid salts, water-soluble organic acid in cell was minimal (5.50%). The phenomenon indicated that L. Chuanxiong fixed Cd in root (the medical part) with low translocation ability. This study can provide theoretical support for the high-quality production of L. Chuanxiong and other root medical plant in heavy metal influenced sites.
Collapse
Affiliation(s)
- Yanluo Xie
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yi Li
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Yang Wang
- Pengzhou Agriculture and Rural Bureau, Chengdu 611900, Sichuan, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
6
|
Xiang P, Liao W, Xiong Z, Xiao W, Luo Y, Peng L, Zou L, Zhao C, Li Q. Effects of polystyrene microplastics on the agronomic traits and rhizosphere soil microbial community of highland barley. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167986. [PMID: 37879483 DOI: 10.1016/j.scitotenv.2023.167986] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
This study investigated the influence of polystyrene microplastics (MPs) with two different particle sizes (<1 mm, 1-5 mm) and three concentrations (1 g/m2, 10 g/m2, 50 g/m2), as well as added degrading bacteria, on the agronomic traits of highland barley and the bacterial communities in the rhizosphere soil. Results revealed that the small particle size treatment had a significant effect on reducing the 1000-grain weight of highland barley, while the large particle size treatment had an effect on reducing the spike length, width, and awn length (P < 0.05). Additionally, the MP treatment was found to significantly reduce the rhizosphere soil bacterial diversity and richness, including the Shannon, Chao1, observed species, and dominance indices (P < 0.05). Interestingly, the inoculation treatment also reduced microbial diversity, though the microbial diversity after treatment was similar to that of the control community structure, indicating its regulating effect on the soil microbial community. The abundance of Domibacillus, Pedosphaeraceae, and Enterococcus decreased due to the MP treatment, whereas Achromobacter, Massilia, Ralstonia, and Nitrosospira increased (P < 0.05). Furthermore, functional prediction indicated that MP treatment resulted in the enrichment of microbial functions, such as an AraC-type DNA-binding domain, etc. The microbial communities exposed to different sizes and concentrations of MPs had their own unique functions in response to the effects of the MPs. This study provided novel insights into the effects of different particle sizes and concentrations of MPs on the rhizosphere microbial community and agronomic traits of highland barley. It could be used to improve the understanding of the impact of MPs on the rhizosphere soil microecology and enhance bioremediation of MPs.
Collapse
Affiliation(s)
- Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenlong Liao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Wu B, Li J, Kuang H, Shangguan Y, Chen J. Mercapto-based palygorskite modified soil micro-biology and reduced the uptake of heavy metals by Salvia miltiorrhiza in cadmium and lead co-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118859. [PMID: 37647730 DOI: 10.1016/j.jenvman.2023.118859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Salvia miltiorrhiza is an important traditional Chinese medicinal and edible plant that can easily accumulate excessive cadmium (Cd) and lead (Pb) from contaminated soils. The soil contaminated with heavy metals severely threatened the quality of S. miltiorrhiza products. In this study, we investigated the effects of mercapto-based palygorskite (MPAL), a new passivation amendment, on restraining the uptake of Cd and Pb by S. miltiorrhiza, and the impact on soil micro-ecology. Results showed that the application of MPAL prominently enhanced the biomass and antioxidant enzyme activities of S. miltiorrhiza. With the treatment of 4% MPAL, the Cd and Pb contents in the roots were significantly decreased by 81.42% and 69.09%, respectively. The active ingredients of S. miltiorrhiza, including Danshensu, Cryptotanshinone, Tanshinone I and Tanshinone II were remarkedly increased by 1899.46%, 5838.64%, 54.23% and 200.78%, respectively. In addition, MPAL decreased the bio-availability of Cd and Pb by speciation transformation, which simultaneously boosted the activities of cellulase and sucrase. The application of MPAL also improved the bacterial community composition. These findings revealed that the application of MPAL regulated the soil micro-ecology, positively modified the growth and obstructed the Cd and Pb accumulation in S. miltiorrhiza.
Collapse
Affiliation(s)
- Bin Wu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Jia Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Hongjie Kuang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Yuxian Shangguan
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, PR China
| | - Jianbing Chen
- School of Resources and Environment, Xichang University, Xichang, 615000, PR China
| |
Collapse
|
8
|
Lou F, Fu T, He G, Tian W, Wen J, Yang M, Wei X, He Y, He T. Different composites inhibit Cd accumulation in grains under the rice-oilseed rape rotation mode of karst area: A field study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114884. [PMID: 37054472 DOI: 10.1016/j.ecoenv.2023.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Ensuring the safe production of food and oil crops in soils with elevated cadmium (Cd) content in karst regions is crucial. We tested a field experiment to examine the long-term remediation effects of compound microorganisms (CM), strong anion exchange adsorbent (SAX), processed oyster shell (POS), and composite humic acids (CHA) on Cd contamination in paddy fields under a rice-oilseed rape rotation system. In comparison to the control group (CK), the application of amendments significantly increased soil pH, cation exchange capacity (CEC), and soil organic matter (SOM) content while markedly decreasing the content of available Cd (ACd). During the rice cultivation season, Cd was predominantly concentrated in the roots. Relative to the control (CK), the Cd content in each organ was significantly reduced. The Cd content in brown rice decreased by 19.18-85.45%. The Cd content in brown rice following different treatments exhibited the order of CM > POS > CHA > SAX, which was lower than the Chinese Food Safety Standard (GB 2762-2017) (0.20 mg/kg). Intriguingly, during the oilseed rape cultivation season, we discovered that oilseed rape possesses potential phytoremediation capabilities, with Cd mainly accumulating in roots and stems. Notably, CHA treatment alone significantly decreased the Cd content in oilseed rape grains to 0.156 mg/kg. CHA treatment also maintained soil pH and SOM content, consistently reduced soil ACd content, and stabilized Cd content in RSF within the rice-oilseed rape rotation system. Importantly, CHA treatment not only enhances crop production but also has a low total cost (1255.230 US$/hm2). Our research demonstrated that CHA provides a consistent and stable remediation effect on Cd-contaminated rice fields within the crop rotation system, as evidenced by the analysis of Cd reduction efficiency, crop yield, soil environmental change, and total cost. These findings offer valuable guidance for sustainable soil utilization and safe production of grain and oil crops in the context of high Cd concentrations in karst mountainous regions.
Collapse
Affiliation(s)
- Fei Lou
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Tianling Fu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou University, Guiyang 550025, PR China; Institute of New Rural Development, Guizhou University, Guiyang 550025, PR China; College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Weijun Tian
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jichang Wen
- Institute of New Rural Development, Guizhou University, Guiyang 550025, PR China; College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiaoliao Wei
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yeqing He
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou University, Guiyang 550025, PR China; Institute of New Rural Development, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
9
|
Zhao C, Yao J, Knudsen TŠ, Liu J, Zhu X, Ma B. Effect of goethite-loaded montmorillonite on immobilization of metal(loid)s and the micro-ecological soil response in non-ferrous metal smelting areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161283. [PMID: 36587687 DOI: 10.1016/j.scitotenv.2022.161283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In this work, the immobilization stabilization and mechanism of heavy metal(loid)s by goethite loaded montmorillonite (GMt) were investigated, and the soil microbial response was explored. The simulated acid rain leaching experiment showed that GMt had a higher acid tolerance and the more stable heavy metal(loid)s fixation ability. The soil incubation demonstrated that GMt significantly decreased the available Cd, Zn, Pb and As concentration. Interestingly, higher immobilization of heavy metals was observed by GMt in highly acid leached and acidic soils. The richness and diversity of bacterial communities improved after the addition of GMt. GMt induced the enrichment of the excellent functional bacteria of the phylum Proteobacteria as well as the genus Massilia and Sphingomonas. The main immobilization mechanisms of heavy metal(loid)s by GMt include electrostatic interaction, complexation, precipitation and oxidation. The addition of the GMt also optimizes the soil bacterial community structure, which further facilitates the immobilization of heavy metal(loid)s. Our results confirm that the novel GMt has a promising application in the immobilization and stabilization of heavy metal(loid)s contaminated soils in non-ferrous metal smelting areas.
Collapse
Affiliation(s)
- Chenchen Zhao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Tatjana Šolević Knudsen
- Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, University of Belgrade, Njegoševa 12, Belgrade 11000, Serbia
| | - Jianli Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaozhe Zhu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Bo Ma
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
10
|
Liu G, Dai Z, Tang C, Xu J. The immobilization, plant uptake and translocation of cadmium in a soil-pakchoi (Brassica chinensis L.) system amended with various sugarcane bagasse-based materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119946. [PMID: 35977642 DOI: 10.1016/j.envpol.2022.119946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Many organic materials have been used to decrease heavy-metal bioavailability in soil via in-situ remediation due to its high efficiency and easy operation; meanwhile, cheap materials have also been pursued to decrease the cost of remediation. Agricultural wastes exhibit their potential in remediation materials due to their low cost; however, raw agricultural wastes have a low ability to immobilize heavy metals in soil. Attempts have been made to modify agricultural wastes to improve the efficiency of heavy-metal passivation. In this study, novel agricultural waste-based materials, raw sugarcane bagasse (SB), citric acid modified (SSB) and citric-acid/Fe3O4 modified (MSB) sugarcane bagasse at 0.5% and 1% addition rates, were compared for their effectiveness in soil Cd passivation and Cd accumulations in pakchoi plants in a 30-day pot experiment. The addition of SB did not decrease soil bioavailable Cd effectively and slightly decreased Cd accumulation in plant roots and leaves. In comparison, SSB and MSB exhibited a great potential to decrease the transformation, translocation and accumulation of Cd with the decrease being greater at 1% than 0.5% rate in the soil-pakchoi system. For example, the addition of SSB and MSB at 0.5% decreased the concentration of Cd in leaves by 10%, and 16%, and at 1% decreased the concentration by 25% and 30%, respectively. High pH and abundant functional groups of three amendments played important roles in Cd immobilization. The enhanced microbial activities might also contribute to Cd passivation. However, plant growth was decreased in the amended treatments except SSB at 0.5% rate. The results suggest that citric-acid-modified sugarcane bagasse at addition rate of 0.5% has a potential to immobilize Cd in soil and decrease Cd accumulation in edible part of pakchoi effectively without decreasing vegetable growth.
Collapse
Affiliation(s)
- Guofei Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|