1
|
Huang W, Tan Z, Xiao Q, Liu X, Liu K, Li Z, Zhou X, Bai L, Luo K. QpmH esterase from cotton rhizosphere bacteria: A novel approach for degrading quizalofop-p-ethyl herbicide. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138037. [PMID: 40147131 DOI: 10.1016/j.jhazmat.2025.138037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Within the rhizosphere, a rich population of biocontrol bacteria serves as a valuable resource for the biodegradation of environmental herbicides. This study aimed to evaluate rhizospheric microorganisms for their potential to degrade Quizalofop-p-ethyl, a widely used herbicide to control annual and perennial weeds in a variety of crops. A bacterial strain, MJ-8, isolated from cotton rhizosphere soil, demonstrated significant degradation activity. Based on morphological characteristics and 16S rRNA sequencing, the strain was identified as Priestia megaterium. Strain MJ-8 achieved a degradation rate of 90.65 % for Quizalofop-p-ethyl. Genomic analysis and amino acid sequence alignment revealed a key gene, designated QpmH, encoding a 30 kDa protein with strong biodegradation activity. Heterologous expression of the QpmH gene confirmed its role in Quizalofop-p-ethyl degradation. Molecular docking studies and structural modeling further elucidated the enzymatic mechanisms, supported by the analysis of their degradation products. Additionally, when QpmH gene was introduced into rice plants through Agrobacterium-mediated transformation, the resultant transformant conferred resistance to Quizalofop-p-ethyl at the recommended application dose. These findings highlight Priestia megaterium strain MJ-8 as a promising biological agent for sustainable herbicide management and position the QpmH gene as a potential new target for developing herbicide-resistant crops.
Collapse
Affiliation(s)
- Wenjing Huang
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Zebao Tan
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Qin Xiao
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Xiangying Liu
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Kailin Liu
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Zuren Li
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Kun Luo
- College of plant protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Pan S, Sun Y, Shan Y, Song X, Wang D, Ma Y, Hu H, Ren X, Ma Y, Wu C. Deposition, dissipation, metabolism and honey bee exposure risk of thiacloprid in greenhouse scenario. Food Chem 2025; 475:143285. [PMID: 39946927 DOI: 10.1016/j.foodchem.2025.143285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/27/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025]
Abstract
The degradation and non-target risks of neonicotinoids under greenhouse scenarios remain poorly understood. Thiacloprid' deposition, dissipation, metabolism and honey bee exposure risk on greenhouse-grown cowpea, cucumber and melon were analyzed using a rapid detection method for thiacloprid and five metabolites. The initial concentration ratios and half-lives in plant tissues were highest in leaves (67.8 % and 3.13 days), followed by flowers (19.8 % and 1.17 days), stems (9.2 % and 2.07 days) and fruits (3.1 % and 2.40 days). Except for flower part, cowpea exhibited the most robust initial deposition values-1.40, 13.54, and 1.06 mg kg-1 (stem, leaf, fruit)-outstripping other crops corresponding tissues by a staggering 1.18-15.20 times. In the 12-24 h following application, a surge in thiacloprid content within the fruits of cowpea, cucumber, and muskmelon was observed, escalating by 31.6 % (0.33 mg kg-1), 46.0 % (0.13 mg kg-1), and 105.4 % (0.07 mg kg-1), respectively. In addition to M31, four thiacloprid metabolites were identified, with peak concentrations occurring in 1-7 days. Metabolite concentration ratios were highest in fruits (33.9 %), followed by leaves (26.9 %), stems (24.3 %), and flowers (14.9 %). 20.3 % of the time and space sampling was higher than the exposure risk concern value (HQ > 50), and 46.43 % was higher than the oral risk concern value (HQ > 50). Leaves and flowers were identified as high-risk tissues, requiring 2-20 days to reach low-risk levels for pollinator exposure. The research provides insights into the environmental behavior of neonicotinoids and the associated risks to pollinating bees in greenhouse scenarios.
Collapse
Affiliation(s)
- Shaodong Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; College of Horticulture, Anhui Agricultural University, Hefei City, China; College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuweng Sun
- College of Horticulture, Anhui Agricultural University, Hefei City, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Dan Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yajie Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, 450001 Zhengzhou, China.
| | - Yan Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, 450001 Zhengzhou, China.
| | - Changcai Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, 450001 Zhengzhou, China.
| |
Collapse
|
3
|
Mora CC, Rojas Contreras JA, Rosales Villarreal MC, Urban Martínez JL, Delgado E, Medrano Roldan H, Hernández Rodarte FS, Reyes Jáquez D. Identification of microorganisms at different times in a bioleaching process for the recovery of gold and silver from minerals in oxide form. Heliyon 2025; 11:e41878. [PMID: 39872451 PMCID: PMC11770503 DOI: 10.1016/j.heliyon.2025.e41878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
In this study, gold and silver were recovered through a bioleaching process conducted at room temperature over 11 days. Native bacteria and varying ratios of mineral pulp to culture medium (20/80, 37.5/62.5, and 50/50 %) from a mining operation in Zacatecas, Mexico, were evaluated. The mineral was crushed to a particle size of 0.125 inches or smaller, containing gold and silver concentrations of 0.609 g/ton and 138.89 g/ton, respectively. Four native microorganisms were identified using molecular biology techniques and a 16S rRNA gene fragment: Acidovorax citrulli, Brevundimonas albigilva, Sphingomonas korenensis, and Methylobacterium organophilum. The bioleaching system achieved metal extractions of 84.12 % and 63.93 % for gold and silver, respectively. Different microorganisms were identified at various processing times: Sphingomonas korenensis (days 1, 2, 5, 8, and 11), Methylobacterium organophilum (days 1 and 2), Paenibacillus dongdonensis (days 1 and 2), Brevundimonas albigilva (day 5), Ureibacillus manganicus (day 5), Peribacillus simplex (day 8), Niallia circulans (day 8), Massilia atriviolacea (day 11), and Bacillus licheniformis (day 11). The dominant bacterium throughout the process was Sphingomonas korenensis, which appeared at all stages of the experiment.
Collapse
Affiliation(s)
- Cuauhtémoc Contreras Mora
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Juan Antonio Rojas Contreras
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Mayra Cristina Rosales Villarreal
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - José Luis Urban Martínez
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Efren Delgado
- Food Science and Technology, Department of Family and Consumer Sciences, New Mexico State University, P.O. Box 30001, Las Cruces, NM, 88003-8001, USA
| | - Hiram Medrano Roldan
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Felipe Samuel Hernández Rodarte
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Damián Reyes Jáquez
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| |
Collapse
|
4
|
Zhang Q, Xu P, Yan N, Ren Y, Liang X, Guo X. Adsorption of neonicotinoid insecticides by mulch film-derived microplastics and their combined toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177238. [PMID: 39490386 DOI: 10.1016/j.scitotenv.2024.177238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Mulch films allow for efficient crop production, yet their low recovery after use causes severe microplastics (MPs) pollution in agricultural soils. MPs in agricultural environments undergo complex ageing processes, which can alter their interactions with coexisting neonicotinoids and result in unpredictable ecological risks. Here, polyethylene (PE) and polybutylene adipate terephthalate (PBAT), typical mulch films, were chosen for the preparation of PE-MPs and PBAT-MPs. The adsorption of two common neonicotinoids, imidacloprid and dinotefuran, by the two MPs and their joint toxicity were examined. We found that the specific surface area of PBAT-MPs (7.59 m2 g-1) is greater than that of PE-MPs (2.83 m2 g-1), which results in a greater adsorption capacity for neonicotinoids. Additionally, ageing increased the adsorption capacity of MPs for neonicotinoids by 37.50-40.68 % for PBAT-MPs and 44.23-72.34 % for PE-MPs. This enhancement is attributed to the introduction of additional oxygen-containing functional groups on the MPs' surfaces, which can form hydrogen bonds with the amino groups in imidacloprid and dinotefuran. Furthermore, compared to single MPs and neonicotinoids, stronger inhibition in the growth of Escherichia coli and the germination of lettuce seeds was observed when they coexisted. This study highlights the importance of assessing the interactions between MPs and neonicotinoids and their joint toxicity, thereby improving our understanding of the potential risks of MPs towards the agricultural ecosystems.
Collapse
Affiliation(s)
- Quanxin Zhang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Pingfan Xu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China.
| | - Nana Yan
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Yujing Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Lu Q, Xu X, Liu L, Sun M, Qu A, Xu C, Kuang H. Production of a monoclonal antibody against thiacloprid, resistant to matrix interference, and its application in quantitatively immunochromatographic assay. Food Chem 2024; 467:142172. [PMID: 39681010 DOI: 10.1016/j.foodchem.2024.142172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Thiacloprid (THI) is a neonicotinoid insecticide, and its residues pose potential risks to the ecological environment and human health. In this study, computer simulation technology was applied to analyze THI haptens to ensure the similarity in spatial structure, charge properties, and potential distribution. And anti-THI monoclonal antibodies insensitive to matrix effects were prepared using sample extraction solution to simulate the matrix environment, with the half-maximal inhibitory concentration of 0.070 ng/mL in the matrix environment. Furthermore, a colloidal gold immunochromatographic assay (ICA) was established for the detection of THI residues in fruit and vegetable samples, with a quantitative detection range of 0.880-11.091 μg/kg, 1.669-14.056 μg/kg, 31.570-586.121 μg/kg, and 42.291-778.803 μg/kg in grapes, oranges, cucumbers, and tomatoes, respectively. Real sample testing indicated that this method had good consistency with LC-MS/MS. Therefore, the ICA withstood matrix interference, accurately and effectively determined THI residues in fruit and vegetable samples.
Collapse
Affiliation(s)
- Qianqian Lu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
6
|
Sun SR, Sun QY, Liu F, Zhao YF, Wang XL, Jiang HL, Li N, Wu YN, Liu L, Zhao RS. Efficient Solid-Phase Extraction of Neonicotinoid Insecticides from Environmental Water and Drink Samples Using a Postmodified Metal-Organic Framework. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22327-22335. [PMID: 39318234 DOI: 10.1021/acs.jafc.4c04800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Neonicotinoid insecticides (NNIs) are extensively utilized globally because of their efficient and broad-spectrum properties. However, their residues are also extensively distributed in the environment. Herein, MIL-101-SO3Na with abundant -NH- and sulfonate groups was synthesized via chloromethylation and nucleophilic substitution postmodification strategies and used to extract NNIs via solid-phase extraction. MIL-101-SO3Na was enhanced by introducing C-H···N hydrogen bonds to strengthen interaction forces and -SO3Na groups to adjust surface charge and enhance electrostatic attraction. This modification and the substantial specific surface area (998 m2·g-1) of the metal-organic framework markedly enhanced the enrichment efficiency of MIL-101. The proposed method based on MIL-101-SO3Na exhibited a minimal detection threshold (0.04-0.87 ng·L-1), an extensive linear spectrum (1-2000 ng·L-1), and notable accuracy (a variation of 3.02-11.8%) in water and drink samples. NNI concentrations between 0.25 and 24.2 ng·L-1 in fruit juice and tea samples were accurately identified using the proposed method, demonstrating its feasibility in practical applications. The postmodification of MIL-101-SO3Na is an exceptional and promising approach for the sensitive detection of ultratrace NNI levels in complex matrices.
Collapse
Affiliation(s)
- Shi-Rong Sun
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qian-Yun Sun
- Shandong Institute of Metrology, Jinan 250014, China
| | - Feng Liu
- Quality Department, Sinotruk Jinan Truck Co., Ltd., Jinan 250000, China
| | - Yan-Fang Zhao
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiao-Li Wang
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hai-Long Jiang
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Na Li
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yong-Ning Wu
- China National Center for food safety Risk Assessment, Beijing 100022, China
| | - Lu Liu
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ru-Song Zhao
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
7
|
Hassaan MA, Ragab S, Elkatory MR, El Nemr A. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) distribution, origins, and risk evaluation in the Egyptian Mediterranean coast sediments. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11093. [PMID: 39129319 DOI: 10.1002/wer.11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/08/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
A study was conducted on 31 surface sediments located in different sectors of the Egyptian Mediterranean coast. The sediments were analyzed for their pollution levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The sediments were collected from various depths in harbors, coastal lakes, bays, and lagoons, covering the southeastern Mediterranean of the Nile Delta region. The study aimed at determining the distribution, origin, and potential ecological impact of OCP and PCB pollutants. The researchers used the SRM method of GC-MS/MS to measure the concentration of 18 PCBs and 16 OCPs residues. The study found that the total concentration of OCPs in the samples ranged from 3.091 to 20.512 ng/g, with a mean of 8.749 ± 3.677 ng/g. The total concentration of PCB residues ranged from 2.926 to 20.77 ng/g, with a mean of 5.68 ± 3.282 ng/g. The concentration of DDTs exceeded the effect range low (ERL) (1.00) and threshold effect level (TEL) (1.19) in several stations, but it was still below the effect range median (ERM) (7.00) and the probable effect level (PEL) (4.77). This indicates a low ecological risk. The principal component analysis (PCA) was also conducted to determine the sources of all pollutants in the sediment. The PCA showed significant correlations between the concentrations of Gama-HCH and Beta-HCH (0.741), suggesting similar sources. PRACTITIONER POINTS: OCPs and PCBs residues were analyzed in the sediment of the southeastern Mediterranean. The concentration, existence, and causes of OCPs and PCBs were investigated. OCPs and PCBs ecological risk and ecotoxicological calculation were investigated in detail. Cluster analysis, PCA, and correlation coefficient were also investigated.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, SRTA-City, New Borg El-Arab City, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
8
|
Irfan Z, Firdous SM, Citarasu T, Uma G, Thirumalaikumar E. Isolation and screening of antimicrobial biosurfactants obtained from mangrove plant root-associated bacteria. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3261-3274. [PMID: 37930391 DOI: 10.1007/s00210-023-02806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
The unique properties of biosurfactants obtained from microbes, including their activity at extreme temperatures, make them more attractive than synthetic alternatives. Henceforth, the principle objective is to isolate and detect the antibacterial and antifungal activities of the biosurfactants produced from bacteria of the economically competitive mangrove ecosystem. Using the serial dilution method, 53 bacterial strains were recovered from the Manakudy mangrove forest in Kanyakumari, India, for the investigation. Different biosurfactant screening methods and morphological and biochemical tests were opted to select the potential biosurfactant producer. After the initial screening, two strains were discovered by 16S rRNA gene sequencing followed by extraction using chloroform: methanol (2:1) by the precipitation method. The partially purified biosurfactants were then screened for antimicrobial properties against pathogens including Mucor sp., Trichoderma sp. Morphological, biochemical, and 16S rRNA gene sequencing identified the two strains to be gram-positive, rod-shaped bacteria namely Virgibacillus halodentrificans CMST-ZI (GenBank Accession No.: OL336402.1) and Pseudomonas pseudoalcaligenes CMST-ZI (GenBank Accession No (10 K): OL308085.1). The two extracted biosurfactants viz., 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, as well as cycloheptane efficiently inhibited human pathogens, including Enterococcus faecalis, and fungi, including Mucor sp., Trichoderma sp., indicated by the formation of a zone of inhibition in pharmacological screening. Thus, there is a growing interest in the prospective application of these biosurfactants isolated from marine microbes, exhibiting antimicrobial properties which can be further studied as a potential candidate in biomedical studies and eco-friendly novel drug development.
Collapse
Affiliation(s)
- Zainab Irfan
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal, India
| | - Sayeed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah-711316, West Bengal, India.
| | - Thavasimuthu Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Kanyakumari District, Tamil Nadu, India.
| | - Ganapathi Uma
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Kanyakumari District, Tamil Nadu, India
| | | |
Collapse
|
9
|
Satheeshkumar A, Duraimurugan R, Parthipan P, Sathishkumar K, AlSalhi MS, Devanesan S, Rajamohan R, Rajasekar A, Malik T. Integrated Electrochemical Oxidation and Biodegradation for Remediation of a Neonicotinoid Insecticide Pollutant. ACS OMEGA 2024; 9:15239-15250. [PMID: 38585078 PMCID: PMC10993376 DOI: 10.1021/acsomega.3c09749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
A novel integrated electrochemical oxidation (EO) and bacterial degradation (BD) technique was employed for the remediation of the chloropyridinyl and chlorothiazolyl classes of neonicotinoid (NEO) insecticides in the environment. Imidacloprid (IM), clothianidin (CL), acetamiprid (AC), and thiamethoxam (TH) were chosen as the target NEOs. Pseudomonas oleovorans SA2, identified through 16S rRNA gene analysis, exhibited the potential for BD. In EO, for the selected NEOs, the total percentage of chemical oxygen demand (COD) was noted in a range of 58-69%, respectively. Subsequently, in the biodegradation of EO-treated NEOs (BEO) phase, a higher percentage (80%) of total organic carbon removal was achieved. The optimum concentration of NEOs was found to be 200 ppm (62%) for EO, while for BEO, the COD efficiency was increased up to 79%. Fourier-transform infrared spectroscopy confirms that the heterocyclic group and aromatic ring were degraded in the EO and further utilized by SA2. Gas chromatography-mass spectroscopy indicated up to 96% degradation of IM and other NEOs in BD (BEO) compared to that of EO (73%). New intermediate molecules such as silanediamine, 1,1-dimethyl-n,n'-diphenyl produced during the EO process served as carbon sources for bacterial growth and further mineralized. As a result, BEO enhanced the removal of NEOs with a higher efficiency of COD and a lower consumption of energy. The removal efficiency of the NEOs by the integrated approach was achieved in the order of AC > CL > IM > TH. This synergistic EO and BD approach holds promise for the efficient detoxification of NEOs from polluted environments.
Collapse
Affiliation(s)
- Azhagarsamy Satheeshkumar
- Environmental
Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Ramanathan Duraimurugan
- Environmental
Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Punniyakotti Parthipan
- Department
of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu, Kattankulathur 603 203, Tamil Nadu, India
| | - Kuppusamy Sathishkumar
- Center
for Global Health Research, Saveetha Medical College and Hospitals,
Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University Chennai, 602105, India
| | - Mohamad S. AlSalhi
- Department
of Physics and Astronomy, College of Science, King Saud University, P.O. Box- 2455, Riyadh 11451, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department
of Physics and Astronomy, College of Science, King Saud University, P.O. Box- 2455, Riyadh 11451, Saudi Arabia
| | - Rajaram Rajamohan
- Organic Materials
Synthesis Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic
of Korea
| | - Aruliah Rajasekar
- Environmental
Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Tabarak Malik
- Adjunct
Faculty, Division of Research & Development, Lovely Professional University, Jalandhar-Delhi, Phagwara, Punjab 144411, India
- Department
of Biomedical Sciences, Institute of Health, Jimma University, Jimma 378, Ethiopia
| |
Collapse
|
10
|
Ji S, Cheng H, Rinklebe J, Liu X, Zhu T, Wang M, Xu H, Wang S. Remediation of neonicotinoid-contaminated soils using peanut shell biochar and composted chicken manure: Transformation mechanisms of geochemical fractions. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133619. [PMID: 38310841 DOI: 10.1016/j.jhazmat.2024.133619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
Soil remediation techniques are promising approaches to relieve the adverse environmental impacts in soils caused by neonicotinoids application. This study systematically investigated the remediation mechanisms for peanut shell biochar (PSB) and composted chicken manure (CCM) on neonicotinoid-contaminated soils from the perspective of transformation of geochemical fractions by combining a 3-step sequential extraction procedure and non-steady state model. The neonicotinoid geochemical fractions were divided into labile, moderate-adsorbed, stable-adsorbed, bound, and degradable fractions. The PSB and CCM addition stimulated the neonicotinoid transformation in soils from labile fraction to moderate-adsorbed and stable-adsorbed fractions. Compared with unamended soils, the labile fractions decreased from 47.6% ± 11.8% of the initial concentrations to 12.1 ± 9.3% in PSB-amended soils, and 7.1 ± 4.9% in PSB and CCM-amended soils, while the proportions of moderate-adsorbed and stable-adsorbed fractions correspondingly increased by 1.8-2.4 times and 2.3-4.8 times, respectively. A small proportion (<4.8%) in bound fractions suggested there were rather limited bound-residues after 48 days incubation. The PSB stimulated the -NO2-containing neonicotinoid-degraders, which promoted the degradable fractions of corresponding neonicotinoids by 8.2 ± 6.3%. Degradable fraction of neonicotinoids was the dominant fate in soils, which accounted for 58.3 ± 16.7%. The findings made beneficial theoretical supplements and provided valuable empirical evidence for the remediation of neonicotinoid-contaminated soils.
Collapse
Affiliation(s)
- Shu Ji
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haomiao Cheng
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Xiang Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Tengyi Zhu
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Menglei Wang
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Shanghai Construction No.2 (Group) Co., Ltd, Shanghai 200080, China
| | - Hanyang Xu
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Shengsen Wang
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
11
|
Li J, Guo Z, Cui K, Chen X, Yang X, Dong D, Xi S, Wu Z, Wu F. Remediating thiacloprid-contaminated soil utilizing straw biochar-loaded iron and manganese oxides activated persulfate: Removal effects and soil environment changes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132066. [PMID: 37467608 DOI: 10.1016/j.jhazmat.2023.132066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Thiacloprid (THI) has accumulated significantly in agricultural soil. Herein, a novel approach to removing THI was explored by straw biochar-loaded iron and manganese oxides (FeMn@BC) to activate the persulfate (PS). The factors influencing the removal of 5 mg kg-1 THI from the soil by FeMn@BC/PS were investigated, including FeMn@BC dosing, PS dosing, temperature, and soil microorganisms. The feasibility was demonstrated by the 75.22% removal rate of THI with 3% FeMn@BC and 2% PS at 7 days and a 92.50% removal rate within 60 days. Compared to the THI, NH4+-N and available potassium were 3.96 and 3.25 times, and urease and phosphatase activities were increased by 22.54% and 33.28% in the FeMn@BC/PS at the 15 days, respectively. THI was found to seriously alter the structure of the genus in the 15 days by 16 S rRNA analysis; however, the FeMn@BC/PS group alleviated the damage, compared to the THI with 658 more operational taxonomic units. Actinobacteriota accounted for 51.48% of the microbial community in the FeMn@BC/PS group after 60 days, possibly converting transition products of THI into smaller molecules. This article provides a novel insight into advanced oxidative remediation of soils.
Collapse
Affiliation(s)
- Jie Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Xing Chen
- Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Shanshan Xi
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Zhangzhen Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Feiyan Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
12
|
Tan H, Wang C, Zhu S, Liang Y, He X, Li Y, Wu C, Li Q, Cui Y, Deng X. Neonicotinoids in draining micro-watersheds dominated by rice-vegetable rotations in tropical China: Multimedia occurrence, influencing factors, transport, and associated ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130716. [PMID: 36610339 DOI: 10.1016/j.jhazmat.2022.130716] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Multimedia contamination by neonicotinoid (NEO) residues has attracted global attention. However, data regarding the multimedia polluted status under certain typical cropping scenarios and the associated risks are scarce. Here, the multimedia occurrence, spatiotemporal distribution, driving factors, transport, and ecological risks of NEOs from tropical rice-vegetable rotation fields were characterized. The heavy NEOs resided in multiple media, and imidacloprid and acetamiprid were the prevailing NEOs, with concentration contributions of 65-80%. The pollution levels of the NEOs, rather than their compositions, exhibited significant spatiotemporal heterogeneity and were highly correlated with the collective (agricultural practices and climate conditions) and differential (e.g., media properties) factors identified using an auto linear regression model. Furthermore, the multimedia transport of NEOs was largely similar but non-negligibly different during the rainy and dry seasons. A new multimedia ecological risk assessment revealed that 50.6% sites were at high risk, and the risk hotspots occurred in the central areas and the winter planting period. The risks were largely contributed by imidacloprid and thiamethoxam, indicating that there were non-ignorable ecological risks. Our results highlight the differential pollution patterns (distribution, transport, and driving factors) of the prevailing NEOs under tropical agricultural scenarios, and the fact that special attention should be paid to the risks posed by NEOs.
Collapse
Affiliation(s)
- Huadong Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| | - Chuanmi Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; College of Plant Protection, Hainan University, Haikou 570228, PR China
| | - Sipu Zhu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; School of Resources and Environment, Central China Agricultural University, Wuhan 430070, PR China
| | - Yuefu Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; School of Resources and Environment, Central China Agricultural University, Wuhan 430070, PR China
| | - Xiaoyu He
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; School of Resources and Environment, Central China Agricultural University, Wuhan 430070, PR China
| | - Yi Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China
| | - Chunyuan Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China.
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| | - Yanmei Cui
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China
| | - Xiao Deng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| |
Collapse
|
13
|
Muthukumar B, Surya S, Sivakumar K, AlSalhi MS, Rao TN, Devanesan S, Arunkumar P, Rajasekar A. Influence of bioaugmentation in crude oil contaminated soil by Pseudomonas species on the removal of total petroleum hydrocarbon. CHEMOSPHERE 2023; 310:136826. [PMID: 36243087 DOI: 10.1016/j.chemosphere.2022.136826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to carry out the bioaugmentation of crude oil/motor oil contaminated soil. The mixture of novel strains Pseudomonas aeruginosa PP3 and Pseudomonas aeruginosa PP4 were used in this bioaugmentation studies. The four different bioaugmentation systems (BS 1-4) were carried out in this experiment labelled as BS 1 (Crude oil contaminated soil), BS 2 (BS 1 + bacterial consortia), BS 3 (Motor oil sludge contaminated soil), and BS 4 (BS 3 + bacterial consortia). The total petroleum hydrocarbon (TPH) was investigated for monitor the effectiveness of bioaugmentation process. The highest TPH removal rate was recorded on BS 4 (9091 mg Kg -1) was about 67% followed by 52% on BS 2 (8584 mg Kg -1) respectively. The percentage of biodegradation efficiency (BE) of residual crude and motor oil contaminated soil were evaluated by GCMS analysis and the results showed that 65% (BS 2) and 83% (BS 4) respectively. Further the bioaugmented soil was subjected to the plant cultivation (Lablab purpureus) and the results revealed that the L. purpureus was rapidly grown in the systems BS 4 and BS 2 than the system BS 1 and BS 2 which was due to the lesser biodegradation of the crude oil contents. In resultant, it can be concluded that the soil was suitable for the cultivation of plant. Overall, this study revealed that the selected bacterial consortia were effectively degraded the hydrocarbon and act as a potential bioremediator in the hydrocarbon polluted soil in a short period.
Collapse
Affiliation(s)
- Balakrishnan Muthukumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Saravanan Surya
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Krithiga Sivakumar
- Department of Community Medicine, Government Stanley Medical College, Chennai, Tamil Nadu, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Tentu Nageswara Rao
- Department of Chemistry, Krishna University, Machilipatnam, AP, 521001, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Paulraj Arunkumar
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
| |
Collapse
|
14
|
Scharpf I, Cichocka S, Le DT, von Mikecz A. Peripheral neuropathy, protein aggregation and serotonergic neurotransmission: Distinctive bio-interactions of thiacloprid and thiamethoxam in the nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120253. [PMID: 36155223 DOI: 10.1016/j.envpol.2022.120253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Due to worldwide production, sales and application, neonicotinoids dominate the global use of insecticides. While, neonicotinoids are considered as pinpoint neurotoxicants that impair cholinergic neurotransmission in pest insects, the sublethal effects on nontarget organisms and other neurotransmitters remain poorly understood. Thus, we investigated long-term neurological outcomes in the decomposer nematode Caenorhabditis elegans. In the adult roundworm the neonicotinoid thiacloprid impaired serotonergic and dopaminergic neuromuscular behaviors, while respective exposures to thiamethoxam showed no effects. Thiacloprid caused a concentration-dependent delay of the transition between swimming and crawling locomotion that is controlled by dopaminergic and serotonergic neurotransmission. Age-resolved analyses revealed that impairment of locomotion occurred in young as well as middle-aged worms. Treatment with exogenous serotonin rescued thiacloprid-induced swimming deficits in young worms, whereas additional exposure with silica nanoparticles enhanced the reduction of swimming behavior. Delay of forward locomotion was partly caused by a new paralysis pattern that identified thiacloprid as an agent promoting a specific rigidity of posterior body wall muscle cells and peripheral neuropathy in the nematode (lowest-observed-effect-level 10 ng/ml). On the molecular level exposure with thiacloprid accelerated protein aggregation in body wall muscle cells of polyglutamine disease reporter worms indicating proteotoxic stress. The results from the soil nematode Caenorhabditis elegans show that assessment of neurotoxicity by neonicotinoids requires acknowledgment and deeper research into dopaminergic and serotonergic neurochemistry of nontarget organisms. Likewise, it has to be considered more that different neonicotinoids may promote diverse neural end points.
Collapse
Affiliation(s)
- Inge Scharpf
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Sylwia Cichocka
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Dang Tri Le
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany.
| |
Collapse
|
15
|
Eco-toxicological effect of a commercial dye Rhodamine B on freshwater microalgae Chlorella vulgaris. Arch Microbiol 2022; 204:658. [PMID: 36183287 DOI: 10.1007/s00203-022-03254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022]
Abstract
In this study, the acute toxicity effects of a fluorescent xanthene dye, Rhodamine B (RhB), widely used in textile, paper, and leather industries was investigated on a freshwater microalgae Chlorella vulgaris. The acute toxicity of RhB on C. vulgaris was determined by examining the growth, cell morphology, pigment production, protein content, and the activities of oxidative stress enzymes. Based on the results of the toxicity study of 24-96 h, the median inhibitory concentration (IC50) values ranged from 69.94 to 31.29 mg L-1. The growth of C. vulgaris was conspicuously inhibited by RhB exposure, and the cell surfaces appeared to be seriously shrunk in SEM analysis. The growth of C. vulgaris was hindered after exposure to graded concentrations (10-50 mg L-1) of RhB. A significant reduction in growth rate, pigment synthesis (chlorophyll a, chlorophyll b, and carotenoid), and protein content was recorded in a dose-dependent manner. After 96 h exposure of C. vulgaris to 50 mg L-1 RhB, chlorophyll a, chlorophyll b, carotenoids, and protein contents were reduced by 71.59, 74.90, 65.84, and 74.20%, respectively. The activities of the antioxidant enzymes peroxidase (POD), and catalase (CAT) also increased markedly in the presence of RhB. A notable effect was observed on oxidative enzymes catalase and peroxidase, indicating that oxidative stress may be the primary factor in the inhibition of growth and pigment synthesis. Consequently, the experimental acute toxicity data were compared to the QSAR prediction made by the ECOSAR programme. Results showed that the experimental acute toxicity values were 67.74-fold lower than the ECOSAR predicted values. The study provides convincing evidence for the metabolic disruption in the ubiquitous microalgae C. vulgaris due to the RhB dye toxicity.
Collapse
|