1
|
Abbas G, Bokhari TH, Iqbal MA, Majeed A, Muneer M, Hussain G, Fatima M, Amara UE. Degradation of synthetic reactive Pyrazole-133 dye by using an advanced oxidation process assisted by gamma radiations. Radiat Phys Chem Oxf Engl 1993 2025; 229:112418. [DOI: 10.1016/j.radphyschem.2024.112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Mollaie F, Afroomand M, Ahmadi N, Mengelizadeh N, Balarak D. Optimization of photodegradation of acid blue 1 dye on aluminosilicate supported Cu doped TiO 2 magnetic nanocatalyst using response surface methodology. Sci Rep 2025; 15:5550. [PMID: 39952986 PMCID: PMC11828876 DOI: 10.1038/s41598-025-89968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
In this study, the magnetic TiO2/Cu/aluminosilicate (MCTA) catalyst was synthesized through a two-step process using the hydrothermal and solvothermal methods. The synthesized materials underwent comprehensive characterization using various analytical techniques. These materials were subsequently applied for the effective elimination of Acid Black 1 dye (AB1). To establish robust correlations among these influential parameters, the research adopted the Box-Behnken design (BBD) within the framework of RSM. This approach ensures a systematic and thorough exploration of the interplay between various variables in the photocatalytic degradation process. In this study, sunlight was utilized as an energy source for the degradation process. The degradation of AB1 reached its peak efficiency under the following optimal conditions: catalyst mass of 0.75 g/L, AB1 concentration of 37.5 mg/L, pH of 3, and a contact time of 45 min. The efficiency, based on the model prediction, was 98.9%, while experimental results showed a 99.1% efficiency. Dark adsorption tests were also conducted, revealing that the dye degradation rate through the photocatalytic process was 18-22 times higher compared to the adsorption process at different concentrations. Toxicity tests revealed that the remaining AB1 in the aquatic environment lost its antibacterial activity after undergoing the studied process. The scavenger experiment provided confirmation that successful photodegradation of AB1 is attributed to the indispensable contribution of both •OH and •O2-. Additionally, MCTA demonstrated outstanding cycle stability in the photocatalytic degradation of AB1. MCTA emerges as a dependable sunlight-responsive heterostructure photocatalyst with significant potential for the photodegradation of pollutants in wastewater treatment.
Collapse
Affiliation(s)
- Fatemeh Mollaie
- Department of Textile Engineering, Islamic Azad University South Tehran Branch, Tehran, Iran
| | - Mahdieh Afroomand
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Najmeh Ahmadi
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nezamaddin Mengelizadeh
- Department of Environmental Health Engineering, Faculty of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Davoud Balarak
- Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
3
|
Wang L, Xiao W, Zhang H, Zhang J, Chen X. Improved Natamycin Production in Streptomyces gilvosporeus Through Mutagenesis and Enhanced Nitrogen Metabolism. Microorganisms 2025; 13:390. [PMID: 40005756 PMCID: PMC11857858 DOI: 10.3390/microorganisms13020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Natamycin is a polyene macrocyclic antibiotic extensively used in food, medical, and agricultural industries. However, its high production cost and low synthetic efficiency fail to meet the growing market demand. Therefore, enhancing the production of natamycin-producing strains is crucial for achieving its industrial-scale production. This study systematically evaluated 16 mutagenesis methods and identified atmospheric and room temperature plasma mutagenesis combined with 2-deoxyglucose tolerance screening as the optimal strategy for enhancing natamycin production. A high-yield mutant strain, AG-2, was obtained, achieving an 80% increase in natamycin production (1.53 g/L) compared to the original strain. Metabolic analysis revealed that glycolysis and the pentose phosphate pathway were enhanced in AG-2, while the tricarboxylic acid cycle was weakened, significantly increasing the supply of precursors such as acetyl-CoA, methylmalonyl-CoA, and the reducing power of NADPH. Additionally, overexpression of the nitrogen metabolism regulatory gene glnR promoted the supply of glutamate and glutamine, further increasing natamycin production in AG-2 to 1.85 g/L. In a 5 L fermenter, the engineered strain AG-glnR achieved a final natamycin production of 11.50 g/L, 1.67 times higher than the original strain. This study is the first to combine mutagenesis with nitrogen metabolism regulation, effectively enhancing natamycin production and providing a novel approach for the efficient synthesis of other polyene antibiotics.
Collapse
Affiliation(s)
| | | | | | | | - Xusheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (L.W.)
| |
Collapse
|
4
|
Yang W, Gong W, Zhu L, Ma X, Xu W. Novel catalytic behavior of defective nanozymes with catalase-mimicking characteristics for the degradation of tetracycline. J Colloid Interface Sci 2025; 677:952-966. [PMID: 39178674 DOI: 10.1016/j.jcis.2024.08.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Although nanozymes have shown significant potential in wastewater treatment, enhancing their degradation performance remains challenging. Herein, a novel catalytic behavior was revealed for defective nanozymes with catalase-mimicking characteristics that efficiently degraded tetracycline (TC) in wastewater. Hydroxyl groups adsorbed on defect sites facilitated the in-situ formation of vacancies during catalysis, thereby replenishing active sites. Additionally, electron transfer considerably enhanced the catalytic reaction. Consequently, numerous reactive oxygen species (ROS) were generated through these processes and subsequent radical reactions. The defective nanozymes, with their unique catalytic behavior, proved effective for the catalytic degradation of TC. Experimental results demonstrate that •OH, •O2-, 1O2 and e- were the primary contributors to the degradation process. In real wastewater samples, the normalized degradation rate constant for defective nanozymes reached 26.0 min-1 g-1 L, exceeding those of other catalysts. This study reveals the new catalytic behavior of defective nanozymes and provides an effective advanced oxidation process for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Wenping Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Le-Khac UN, Bolton M, Boxall NJ, Wallace SMN, George Y. Living review framework for better policy design and management of hazardous waste in Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171556. [PMID: 38458450 DOI: 10.1016/j.scitotenv.2024.171556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The significant increase in hazardous waste generation in Australia has led to the discussion over the incorporation of artificial intelligence into the hazardous waste management system. Recent studies explored the potential applications of artificial intelligence in various processes of managing waste. However, no study has examined the use of text mining in the hazardous waste management sector for the purpose of informing policymakers. This study developed a living review framework which applied supervised text classification and text mining techniques to extract knowledge using the domain literature data between 2022 and 2023. The framework employed statistical classification models trained using iterative training and the best model XGBoost achieved an F1 score of 0.87. Using a small set of 126 manually labelled global articles, XGBoost automatically predicted the labels of 678 Australian articles with high confidence. Then, keyword extraction and unsupervised topic modelling with Latent Dirichlet Allocation (LDA) were performed. Results indicated that there were 2 main research themes in Australian literature: (1) the key waste streams and (2) the resource recovery and recycling of waste. The implication of this framework would benefit the policymakers, researchers, and hazardous waste management organisations by serving as a real time guideline of the current key waste streams and research themes in the literature which allow robust knowledge to be applied to waste management and highlight where the gap in research remains.
Collapse
Affiliation(s)
- Uyen N Le-Khac
- Data Science and AI Department, Faculty of Information Technology, Monash University, Australia.
| | - Mitzi Bolton
- Monash Sustainable Development Institute, Monash University, Australia
| | - Naomi J Boxall
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia
| | - Stephanie M N Wallace
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), School of BioSciences, University of Melbourne, Australia
| | - Yasmeen George
- Data Science and AI Department, Faculty of Information Technology, Monash University, Australia
| |
Collapse
|
6
|
Yan J, Zhou Y, Shen J, Zhang N, Liu X. Facile synthesis of S, N-co-doped carbon dots for bio-imaging, Fe 3+ detection and DFT calculation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123105. [PMID: 37421697 DOI: 10.1016/j.saa.2023.123105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Turning waste into wealth, herein, two highly fluorescent N and S co-doped carbon dots (N, S-CDs-A and N, S-CDs-B) were synthesized by the hydrothermal reaction of contaminant reactive red 2 (RR2) and L-cysteine or L-methionine, respectively. The detailed morphology and structure of N, S-CDs were characterized by XRD, Raman spectrum, FTIR spectra, TEM, HRTEM, AFM and XPS. The maximum fluorescent of N, S-CDs-A and N, S-CDs-B are 565 and 615 nm under different excitation wavelengths with moderate fluorescence intensity of 14.0 % and 6.3 %, respectively. The microstructure models of N, S-CDs-A and N, S-CDs-B, which were induced by FT-IR, XPS and element analysis, had been applied in DFT calculation. The result indicated that the doping of S and N is beneficial to obtain the red-shift of fluorescent spectra. Both N, S-CDs-A and N, S-CDs-B showed highly sensitive and selective to Fe3+. N, S-CDs-A can also detect Al3+ ion with high sensitivity and selectivity. Finally, N, S-CDs-B was successfully applied in cell imaging.
Collapse
Affiliation(s)
- Jiaying Yan
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China
| | - Yuhang Zhou
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China
| | - Jialu Shen
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Nuonuo Zhang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China.
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China.
| |
Collapse
|
7
|
Zhang Q, Miao R, Feng R, Yan J, Wang T, Gan Y, Zhao J, Lin J, Gan B. Application of Atmospheric and Room-Temperature Plasma (ARTP) to Microbial Breeding. Curr Issues Mol Biol 2023; 45:6466-6484. [PMID: 37623227 PMCID: PMC10453651 DOI: 10.3390/cimb45080408] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Atmospheric and room-temperature plasma (ARTP) is an efficient microbial mutagenesis method with broad application prospects. Compared to traditional methods, ARTP technology can more effectively induce DNA damage and generate stable mutant strains. It is characterized by its simplicity, cost-effectiveness, and avoidance of hazardous chemicals, presenting a vast potential for application. The ARTP technology is widely used in bacterial, fungal, and microalgal mutagenesis for increasing productivity and improving characteristics. In conclusion, ARTP technology holds significant promise in the field of microbial breeding. Through ARTP technology, we can create mutant strains with specific genetic traits and improved performance, thereby increasing yield, improving quality, and meeting market demands. The field of microbial breeding will witness further innovation and progress with continuous refinement and optimization of ARTP technology.
Collapse
Affiliation(s)
- Qin Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Tao Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Ying Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Jin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Q.Z.); (R.M.); (R.F.); (J.Y.); (T.W.); (Y.G.); (J.Z.); (J.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| |
Collapse
|
8
|
Reghioua A, Jawad AH, Selvasembian R, ALOthman ZA, Wilson LD. Box-Behnken design with desirability function for methylene blue dye adsorption by microporous activated carbon from pomegranate peel using microwave assisted K 2CO 3 activation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1988-2000. [PMID: 37291893 DOI: 10.1080/15226514.2023.2216304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This research aims to convert pomegranate peel (PP) into microporous activated carbon (PPAC) using a microwave assisted K2CO3 activation method. The optimum activation conditions were carried out with a 1:2 PP/K2CO3 impregnation ratio, radiation power 800 W, and 15 min irradiation time. The statistical Box-Behnken design (BBD) was employed as an effective tool for optimizing the factors that influence the adsorption performance and removal of methylene blue (MB) dye. The output data of BBD with a desirability function indicate a 94.8% removal of 100 mg/L MB at the following experimental conditions: PPAC dose of 0.08 g, solution pH of 7.45, process temperature of 32.1 °C, and a time of 30 min. The pseudo-second order (PSO) kinetic model accounted for the contact time for the adsorption of MB. At equilibrium conditions, the Freundlich adsorption isotherm describes the adsorption results, where the maximum adsorption capacity of PPAC for MB dye was 291.5 mg g-1. This study supports the utilization of biomass waste from pomegranate peels and conversion into renewable and sustainable adsorbent materials. As well, this work contributes to the management of waste biomass and water pollutant sequestration.
Collapse
Affiliation(s)
- Abdallah Reghioua
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
9
|
Huang C, Liu H, Sun C, Wang P, Tian Z, Cheng H, Huang S, Yang X, Wang M, Liu Z. Peroxymonosulfate activation by graphene oxide-supported 3D-MoS 2/FeCo 2O 4 sponge for highly efficient organic pollutants degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121391. [PMID: 36871747 DOI: 10.1016/j.envpol.2023.121391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
To address conventional powder catalysts' recovery and aggregation issues that greatly restrain their practical application, a recoverable graphene oxide (GO)-supported 3D-MoS2/FeCo2O4 sponge (SFCMG) was developed through a simple impregnation pyrolysis method. SFCMG can efficiently activate peroxymonosulfate (PMS) to produce reactive species for rapid degradation of rhodamine B (RhB), with 95.0% and 100% of RhB being removed within 2 min and 10 min, respectively. The presence of GO enhances the electron transfer performance of the sponge, and the three-dimensional melamine sponge serves as a substrate to provide a highly dispersed carrier for FeCo2O4 and MoS2/GO hybrid sheets. SFCMG exhibits a synergistic catalytic effect of Fe and Co, and facilitates the redox cycles of Fe(III)/Fe(II) and Co(III)/Co(II) by MoS2 co-catalysis, which enhances its catalytic activity. Electron paramagnetic resonance results demonstrate that SO4•-, ·O2- and 1O2 are all involved in SFCMG/PMS system, and 1O2 played a prominent role in RhB degradation. The system has good resistance to anions (Cl-, SO42-, and H2PO4-) and humic acid and excellent performance for many typical contaminants degradation. Additionally, it works efficiently over a wide pH range (3-9) and possesses high stability and reusability with the metal leaching far below the safety standards. The present study extends the practical application of metal co-catalysis and offers a promising Fenton-like catalyst for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chengyou Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Zhongyu Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Su Huang
- School of Business Administration, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Xiong Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Mengxin Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| |
Collapse
|
10
|
Chen X, Lin J, Su Y, Tang S. One-Step Carbonization Synthesis of Magnetic Biochar with 3D Network Structure and Its Application in Organic Pollutant Control. Int J Mol Sci 2022; 23:12579. [PMID: 36293433 PMCID: PMC9604314 DOI: 10.3390/ijms232012579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, a magnetic biochar with a unique 3D network structure was synthesized by using a simple and controllable method. In brief, the microbial filamentous fungus Trichoderma reesei was used as a template, and Fe3+ was added to the culture process, which resulted in uniform recombination through the bio-assembly property of fungal hyphae. Finally, magnetic biochar (BMFH/Fe3O4) was synthesized by controlling different heating conditions in a high temperature process. The adsorption and Fenton-like catalytic performance of BMFH/Fe3O4 were investigated by using the synthetic dye malachite green (MG) and the antibiotic tetracycline hydrochloride (TH) as organic pollutant models. The results showed that the adsorption capacity of BMFH/Fe3O4 for MG and TH was 158.2 and 171.26 mg/g, respectively, which was higher than that of most biochar adsorbents, and the Fenton-like catalytic degradation effect of organic pollutants was also better than that of most catalysts. This study provides a magnetic biochar with excellent performance, but more importantly, the method used can be effective in further improving the performance of biochar for better control of organic pollutants.
Collapse
Affiliation(s)
- Xiaoxin Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jiacheng Lin
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yingjie Su
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shanshan Tang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|