1
|
Li H, Yang Q, Liu W, Li R, Zhang D, Zhang G, Xu Y. Plant secretions and volatiles contribute to the evolution of bacterial antibiotic resistance in soil-crop system. J Environ Sci (China) 2025; 152:516-526. [PMID: 39617572 DOI: 10.1016/j.jes.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 12/10/2024]
Abstract
The exponential growth of antibiotic-resistant bacteria and antibiotic-resistant genes (ARGs) in soil-crop systems in recent years has posed a great challenge to ecological security and human health. While many studies have documented the residues of ARGs in soils and crops, but little is known about who drives the proliferation of ARGs in farming systems and what their underlying mechanisms are. Herein, we explored the occurrence and proliferating behavior of ARGs in soil-crop environments in terms of root secretions and plant volatiles. This review highlighted that plant root secretions and volatile organic compounds (VOCs) served as key substances mediating the development of antibiotic resistance in the soil-crop system. Still, there is controversy here as to plant root secretions promote the ARGs proliferation or inhibit. Some studies indicated that root secretions can suppress the colonization of ARGs, mainly attributed by the production of blunted metabolic enzymes and blocking of cellular exocytosis systems. Whereas the others have evidenced that root secretions can promote ARGs proliferation, primarily by altering the structure of microbial communities to influence species interactions and thus indirectly affect the proliferation of ARGs. Also, VOCs can act as molecular signals to convey antibiotic resistance information to their neighbors, which in turn drive the up-regulation of ARGs expression. Even so, the mechanism by which VOC-driven antibiotic resistance acquisition and proliferation need to be further probed. Overall, this review contributed to the development of products and technologies to impede the ARGs proliferation in agricultural environment.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agricultural and Rural Affairs, Tianjin 300191, China
| | - Qifan Yang
- Agro-Environmental Protection Institute, Ministry of Agricultural and Rural Affairs, Tianjin 300191, China
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, Bvd. Carl-Vogt 66, 1211 Geneva, Switzerland
| | - Ruolan Li
- Agro-Environmental Protection Institute, Ministry of Agricultural and Rural Affairs, Tianjin 300191, China
| | - Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agricultural and Rural Affairs, Tianjin 300191, China
| | - Guilong Zhang
- Agro-Environmental Protection Institute, Ministry of Agricultural and Rural Affairs, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agricultural and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
2
|
Fu Y, Hu F, Wang F, Xu M, Jia Z, Amelung W, Mei Z, Han X, Virta M, Jiang X, Tiedje JM. Field-based evidence for the prevalence of soil antibiotic resistomes under long-term antibiotic-free fertilization. ENVIRONMENT INTERNATIONAL 2025; 195:109202. [PMID: 39681034 DOI: 10.1016/j.envint.2024.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Growing evidence suggests that the use of manure containing residual antibiotics universally leads to an increase in soil antibiotic resistance genes (ARGs). However, there is limited understanding of the influence of long-term antibiotic-free fertilization and the differences between antibiotic-free manure and chemical fertilizer on soil ARGs. This study aimed to quantify the assembly patterns of the antibiotic resistome by in situ probing bacterial community and environmental variations in field soils that have been subjected to long-term exposure to chemical fertilizer and/or manure from animals without antibiotic amendments. Long-term fertilization slightly impacts the diversity of antibiotic resistomes, with 85.5 % of total ARGs and mobile genetic elements (MGEs) being common across all treatment types, while significantly increasing their abundances from 0.68 to a maximum of 0.90 copies/16S rRNA. The rise in ARG abundances was less pronounced when using antibiotic-free manure compared to chemical fertilizer, particularly for Rank Ⅱ ARGs. However, when antibiotic-free manure and chemical fertilizer were combined, a significant increase in nutrients (such as available nitrogen and organic matter) and MGEs occurred, leading to the enrichment of soil microbial populations, especially in certain resistant species, and Rank Ⅰ and Ⅱ ARGs. Despite the influence of various factors like bacterial communities, soil properties, heavy metals, and MGEs, the MGEs had the most significant standardized effects on shaping ARGs through both direct and indirect pathways. Our findings indicates that while of antibiotic-free manure can lower the risk of antibiotic residues and promote sustainable farming practices, it may not fully eliminate the prevalence of ARGs, highlighting the need for more comprehensive strategies to address antibiotic resistance in agriculture rather than simply prohibiting the use of antibiotics.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Chongqing Changan Automobile Co., Ltd., Chongqing 400023, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Min Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongjun Jia
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Wulf Amelung
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, Jülich 52428, Germany; Institute of Crop Science and Resource Conservation (INRES)-Soil Science and Soil Ecology, University of Bonn, Bonn, Germany
| | - Zhi Mei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozeng Han
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014, Finland
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
3
|
Qiu T, Shen L, Guo Y, Gao M, Gao H, Li Y, Zhao G, Wang X. Impact of aeration rate on the transfer range of antibiotic-resistant plasmids during manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124851. [PMID: 39216666 DOI: 10.1016/j.envpol.2024.124851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Conjugative plasmids are important vectors of mobile antibiotic resvistance genes (ARGs), facilitating their horizontal transfer within the environment. While composting is recognized as an effective method to reduce antibiotics and ARGs in animal manure, its impact on the bacterial host communities containing antibiotic-resistant plasmids remains unclear. In this study, we investigated the permissiveness of bacterial community during composting when challenged with multidrug-resistant conjugative RP4 plasmids, employing Pseudomonas putida as the donor strain. Ultimately, this represents the first exploration of the effects of aeration rates on the range of RP4 plasmid transfer hosts. Transconjugants were analyzed through fluorescent reporter gene-based fluorescence-activated cell sorting and Illumina sequencing. Overall, aeration rates were found to influence various physicochemical parameters of compost, including temperature, pH, total organic matter, total nitrogen, and potassium. Regarding RP4 plasmid host bacteria, the dominant phylum was determined to shift from Bacteroidetes in the raw material to Proteobacteria in the compost. Notably, a moderate-intensity aeration rate (0.05 L/min/L) was found to be more effective in reducing the diversity and richness of the RP4 plasmid host bacterial community. Following composting, the total percentage of dominant transconjugant-related genera decreased by 66.15-76.62%. Ultimately, this study determined that the aeration rate negatively impacts RP4 plasmid host abundance primarily through alterations to the environmental factors during composting. In summary, these findings enhance our understanding of plasmid host bacterial communities under varying composting aeration rates and offer novel insights into preventing the dissemination of ARGs from animal manure to farmland.
Collapse
Affiliation(s)
- Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Shen
- College of Life Sciences, Langfang Normal University, Langfang, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haoze Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ying Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Guozhu Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
4
|
Lan L, Chen Y, Ji H, Wang T, Zhang R, Wong MH, Zhang J. Antibiotic-resistant genes derived from commercial organic fertilizers are transported to balconies of residential buildings by express delivery. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:500. [PMID: 39508960 DOI: 10.1007/s10653-024-02279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The rise in antibiotic-resistant genes (ARGs) has recently become a pressing issue, with livestock manure identified as a significant source of these genes. Yet, the distribution of fertilizers derived from livestock manure sold online, potentially containing high levels of ARGs and antibiotic-resistant bacteria (ARB), is often not considered. Our study involved a random survey of commercial organic fertilizers available on online marketplaces, focusing on 13 common ARGs and 2 integrons (intI1, intI2). We found significant ARGs linked to sulfonamides, macrolides, and tetracycline in the 20 fertilizer samples we tested. The gene copy numbers for ermC, sul2, and tetL were exceptionally high, reaching up to 1011 copies per gram of fertilizer in specific samples. Additionally, 18 out of 20 samples contained the critical β-lactam resistance genes blaTEM and blaKPC, with gene copy numbers up to 1010 copies/g. Integrons, intI1, and intI2 were present in all samples, with abundances ranging from 103 to 1010 copies/g. We categorized the 20 samples into three types for further analysis: poultry manure, livestock manure, and earthworm manure. Our findings indicated a high presence of ARGs in poultry manure compared to a lower occurrence in earthworm manure. The study also showed a strong correlation between integrons and specific ARGs. This research underscores the potential risk of commercial organic fertilizers as a pathway for spreading ARGs from the animal breeding environment to human settings through express transportation.
Collapse
Affiliation(s)
- Lihua Lan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Yuxin Chen
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Honghu Ji
- Jinhua Academy of Agricultural Sciences, Jinhua, 321017, People's Republic of China
| | - Ting Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Ranran Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jin Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China.
| |
Collapse
|
5
|
Cheng GM, Cheng H. Overcoming China's animal waste disposal challenge brought by elevated levels of veterinary antimicrobial residues and antimicrobial resistance. ENVIRONMENT INTERNATIONAL 2024; 191:109009. [PMID: 39278046 DOI: 10.1016/j.envint.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Direct application of animal waste on farmlands was banned in China recently, rendering organic fertilizer production a sound solution for disposing of animal manures and recycling their materials and nutrients. Due to the overuse of antimicrobials in livestock and poultry farms, manure-based organic fertilizers often contain elevated residues of antimicrobials and abundant antimicrobial resistance genes. Land application of such products has caused significant concerns on the environmental pollution of antimicrobials, and the transmission and development of antimicrobial resistance (AMR), which is a major global health challenge. China's recent attempt to restrict the contents of antimicrobial residues in organic fertilizers encountered strong resistance from the industry as it would hinder the utilization of animal manures as a raw material. Reducing and even eliminating the use of antimicrobials in animal farms is the ultimate solution to the challenge of manure disposal posed by the elevated levels of antimicrobial residues and AMR. Phasing out the non-therapeutic use of antimicrobials, developing substitutes of antimicrobials, enhancing animal welfare in farms, promoting diversification of animal farms, and developing antimicrobial removal and disinfection technologies for animal waste are recommended to improve the veterinary antimicrobial stewardship and manure management in China's animal agriculture. These concerted measures would enhance the sustainability of crop and animal farming systems in China and mitigate the impact of antimicrobials and AMR to agro-environmental quality and human health.
Collapse
Affiliation(s)
- Grace M Cheng
- The Affiliated High School of Peking University, Beijing 100190, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
Cui E, Zhou Z, Cui B, Fan X, Ali Abid A, Chen T, Gao F, Du Z. Effects of nitrogen fertilization on the fate of high-risk antibiotic resistance genes in reclaimed water-irrigated soil and plants. ENVIRONMENT INTERNATIONAL 2024; 190:108834. [PMID: 38908278 DOI: 10.1016/j.envint.2024.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
High-risk antibiotic resistance genes (ARGs) in reclaimed water-irrigated soil pose a potential threat to ecosystem and human health. Inorganic fertilization - including with nitrogen, a key ingredient in agricultural production - may affect the ARG profile in soil. However, little is known about nitrogen fertilization's influence on ARGs profiles in the soil-plant system. This study investigated the effects of different nitrogen fertilizer types (CO(NH2)2, NO3--N (NaNO3) and NH4+-N (NH4HCO3)) and different nitrogen fertilizer application rates (low, medium, high) on the distribution of high-risk ARGs in reclaimed water-irrigated soil and plants using quantitative PCR, high-throughput sequencing and metagenomic sequencing. Soil microcosms results revealed that nitrogen fertilization significantly affected the pattern of high-risk ARGs in soil, and also affected high-risk ARGs abundance and transfer capacity in plants. Compared with nitrogen fertilizer application rate, nitrogen fertilizer types significantly contributed to enhancing the soil resistome, with the order of CO(NH2)2 > NO3--N ≈ NH4+-N. The medium application of NO3--N and NH4+-N significantly reduced high-risk ARGs abundance in the leaf endophyte. Bacterial community mainly drove the variation of ARGs in nitrogen-fertilized soil-plant system, and class I integron and metal resistance genes (MRGs) also had direct effects on these high-risk ARGs. A similar high-risk ARGs pattern was also found in field plot experiments, and several dangerous pathogens were observed as the main high-risk ARGs potential hosts in nitrogen-fertilized soil. Based on an economic assessment, application of NH4+-N (NH4HCO3) could reduce costs by $1,312.83 ha-1 compared with NO3--N (NaNO3). These results showed that the more important role of nitrogen type might be an effective and economical way to control high-risk ARGs spread in soil-plant system under reclaimed water irrigation.
Collapse
Affiliation(s)
- Erping Cui
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100000, China
| | - Zhenchao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bingjian Cui
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Xiangyang Fan
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China.
| | - Abbas Ali Abid
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou 310058, China
| | - Taotao Chen
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100000, China
| | - Feng Gao
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Zhenjie Du
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| |
Collapse
|
7
|
Li H, Liu B, Li M, Shen M. Livestock and poultry breeding farms as a fixed and underestimated source of antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49916-49931. [PMID: 39052112 DOI: 10.1007/s11356-024-34413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
The excessive use of antibiotics, disinfectants, and drugs in livestock and poultry breeding has resulted in a rise in the presence of antibiotic resistance genes (ARGs). Antibiotic-resistant bacteria (ARB) and ARGs have been widely found in animal feces, farm wastewater, and farm air. ARGs can not only spread across media through adsorption and migration, but also transfer resistance across bacterial genera through horizontal gene transfer. Livestock breeding has become a fixed and unavoidable source of ARGs in the environment. Existing technologies for controlling ARGs, such as composting, disinfection, and sewage treatment, are not efficient in removing ARB and ARGs from waste. Furthermore, the remaining ARGs still possess a strong capacity for dissemination. At present, antibiotics used in animal husbandry are difficult to replace in a short period of time. The growth and potential risks of resistance genes in livestock and poultry breeding sources in the receiving environment are not yet clear. In this paper, we summarize the current situation of ARGs in the livestock and poultry breeding environment. We also explain the key environmental processes, main influencing factors, and corresponding ecological risks associated with ARGs in this environment. The advantages and disadvantages of current technologies for the removal of ARGs are primarily discussed. There is a particular emphasis on clarifying the spatiotemporal evolution patterns and environmental process mechanisms of ARGs, as well as highlighting the importance and urgency of developing efficient pollution control technologies.
Collapse
Affiliation(s)
- Haokai Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Bohao Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Mingyu Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China.
| |
Collapse
|
8
|
Guo R, Yao Y, Zhang Z, Hong C, Zhu F, Hong L, Zhu W. Body size: A hidden trait of the organisms that influences the distribution of antibiotic resistance genes in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134474. [PMID: 38696961 DOI: 10.1016/j.jhazmat.2024.134474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Body size is a key life-history trait of organisms, which has important ecological functions. However, the relationship between soil antibiotic resistance gene (ARG) distribution and organisms' body size has not been systematically reported so far. Herein, the impact of organic fertilizer on the soil ARGs and organisms (bacteria, fungi, and nematode) at the aggregate level was analyzed. The results showed that the smaller the soil aggregate size, the greater the abundance of ARGs, and the larger the body size of bacteria and nematodes. Further analysis revealed significant positive correlations of ARG abundance with the body sizes of bacteria, fungi, and nematodes, respectively. Additionally, the structural equation model demonstrated that changes in soil fertility mainly regulate the ARG abundance by affecting bacterial body size. The random forest model revealed that total phosphorus was the primary soil fertility factor influencing the body size of organisms. Therefore, these findings proposed that excessive application of phosphate fertilizers could increase the risk of soil ARG transmission by increasing the body size of soil organisms. This study highlights the significance of organisms' body size in determining the distribution of soil ARGs and proposes a new disadvantage of excessive fertilization from the perspective of ARGs.
Collapse
Affiliation(s)
- Rui Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanlai Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Xianghu Laboratory, Hangzhou 311231, China.
| | - Zhe Zhang
- Lanxi Farmland Quality and Fertilizer Promotion Center, Lanxi 321100, China
| | - Chunlai Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fengxiang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Leidong Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijing Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
9
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R, Hamza MB. Gastrointestinal tolerability of organic infant formula compared to traditional infant formula: A systematic review. World J Clin Pediatr 2024; 13:88783. [PMID: 38596433 PMCID: PMC11000068 DOI: 10.5409/wjcp.v13.i1.88783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Infants' nutrition significantly influences their growth, development, and overall well-being. With the increasing demand for organic infant formula driven by the perception of health benefits and growing awareness of natural feeding options, it is crucial to conduct a comparative analysis of the gastrointestinal tolerability between organic and traditional infant formulas. AIM To provide a concise and precise analysis of the gastrointestinal tolerability of organic infant formula compared to traditional infant formula. Due to limited direct comparisons, the review synthesizes available literature on each formula type, presenting insights into their potential effects on infants' digestive health. METHODS An extensive literature search was conducted, compiling studies on organic and traditional infant formulas, their compositions, and reported effects on gastrointestinal tolerability. We searched academic databases such as PubMed and Google Scholar and specialized nutrition, paediatrics, and infant health journals using relevant keywords till October 1, 2023. . RESULTS Although specific comparative studies are scarce and formula heterogeneity is a significant limitation, this systematic review provides an in-depth understanding of organic infant formulas' composition and potential benefits. While scientific evidence directly comparing gastrointestinal tolerability is limited, organic formulas strive to use carefully selected organic ingredients to imitate breast milk composition. Potential benefits include improved lipid profiles, higher methionine content, and decreased antibiotic-resistant bacteria levels. Understanding the gastrointestinal tolerability of organic and traditional infant formulas is crucial for parents and healthcare providers to make informed decisions. CONCLUSION Despite limitations in direct comparisons, this systematic review provides insights into the composition and potential benefits of organic infant formulas. It emphasizes the need for further research to elucidate their gastrointestinal effects comprehensively.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Manama, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| | - Mohamed Basiony Hamza
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
| |
Collapse
|
10
|
Li T, Tao S, Ma M, Liu S, Shen M, Zhang H. Is the application of organic fertilizers becoming an undeniable source of microplastics and resistance genes in agricultural systems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169571. [PMID: 38142997 DOI: 10.1016/j.scitotenv.2023.169571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The application of organic fertilizers is becoming an undeniable source of microplastics and antibiotic resistance genes (ARGs) in agricultural soils. The complex microbial activity further transfers resistance genes and their host bacteria to agricultural products and throughout the entire food chain. Therefore, the current main focus is on reducing the abundance of microplastics and ARGs in organic fertilizers at the source, as well as managing microplastics and ARGs in soil. The control of microplastic abundance in organic fertilizers is currently only achieved through pre-composting selection and other methods. However, there are still many shortcomings in the research on the distribution characteristics, propagation and diffusion mechanisms, and control technologies of ARGs, and some key scientific issues still need to be urgently addressed. The high-temperature composting of organic waste can effectively reduce the abundance of ARGs in organic fertilizers to a certain extent. However, it is also important to consider the spread of ARGs in residual antibiotic-resistant bacteria (ARB). This article systematically explores the pathways and interactions of microplastics and resistance genes entering agricultural soils through the application of organic fertilizers. The removal of microplastics and ARGs from organic fertilizers was discussed in detail. Based on the limitations of existing research, further investigation in this area is expected to provide valuable insights for the development and practical implementation of technologies aimed at reducing soil microplastics and resistance genes.
Collapse
Affiliation(s)
- Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Mengjie Ma
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Huijuan Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
11
|
Liu W, Xiang P, Ji Y, Chen Z, Lei Z, Huang W, Huang W, Liu D. Response of viable bacteria to antibiotics in aerobic granular sludge: Resistance mechanisms and behaviors, bacterial communities, and driving factors. WATER RESEARCH 2023; 245:120656. [PMID: 37748345 DOI: 10.1016/j.watres.2023.120656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
The assessment of antimicrobial resistance (AMR) risk by DNA-based techniques mainly relies on total bacterial DNA. In this case, AMR risk recognition is restricted to the genotype level, lacking crucial phenotypic information, such as the distribution of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in dead and viable bacteria. This limitation hinders the recognition of AMR behavior. Herein, based on propidium monoazide (PMA) shielding method, this work firstly quantified the intracellular ARGs/MGEs in viable and dead bacteria, and the impact of viable bacteria composition on the formation of intracellular/extracellular polymeric substance-related /cell-free ARGs (i/e/cARGs) and MGEs (i/e/cMGEs) in aerobic granular sludge (AGS). The shielding efficiency of PMA against dead bacteria was optimized to be as high as 97.5% when the MLSS of AGS was 2.0 g/L. Under antibiotic stimulation, 29.0% ∼ 49.0% of iARGs/iMGEs were carried by viable bacteria, and the remaining proportion were carried by dead bacteria. 18 out of the top 20 dominant genera showed a change in abundance by more than 1% after PMA treatment. 29 viable hosts were identified to associate with 52 iARGs, of which 28 and 15 hosts were also linked to 40 eARGs and 26 cARGs. Also, partial least-squares path model and variance partitioning analysis disclosed that viable bacteria and i/e/cMGEs had a positive effect on i/e/cARGs, with both contributing as much as 64.5% to the total ARGs enrichment. These results better visualized the AMR risk carried by viable bacteria and the categories of viable hosts. This work provides a novel insight into analyzing the actual AMR risk and viable hosts, helping to the reduction and control of AMR in wastewater treatment plants.
Collapse
Affiliation(s)
- Wenhao Liu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Xiang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Ji
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zeyou Chen
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Renmin Road, Haikou 570228, China
| | - Wenli Huang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Dongfang Liu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Xiang Q, Fu CX, Lu CY, Sun AQ, Chen QL, Qiao M. Flooding drives the temporal turnover of antibiotic resistance gene in manure-amended soil-water continuum. ENVIRONMENT INTERNATIONAL 2023; 179:108168. [PMID: 37647704 DOI: 10.1016/j.envint.2023.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Rice paddy soil is a hotspot of antibiotic resistance genes (ARGs) due to the application of organic fertilizers. However, the temporal dynamics of ARGs in rice paddy soil and its flooded water during the growing season remain underexplored. In this study, a microcosm experiment was conducted to explore the ARG profiles in a long term (130 days) flooded two-phase manure-amended soil-water system. By using high-throughput quantitative PCR array, a total of 23-98 and 34-85 ARGs were detected in the soil and overlying water, respectively. Regression analysis exhibited significant negative correlations between ARG profile similarities and flooding duration, indicating that flooding significantly altered the resistome (P < 0.001). This finding was validated by the increased ARG abundance in the soil and the overlying water, for example, after 130 days flooding, the abundance of ARGs in CK soil was increased from 0.03 to 1.20 copies per 16S rRNA. The PCoA analysis further suggested pig manure application resulted in distinct ARG profiles in the soil-water continuum compared with those of the non-amended control (Adonis, P < 0.05). The Venn diagram showed that all ARGs detected in the pig manure were present in the treated soil. Twelve ARGs (e.g., sul1) were shared among the pig manure, manure-amended soil, and overlying water, indicating that certain manure- or soil-borne ARGs were readily dispersed from the soil to the overlying water. Moreover, the enhanced relationships between the ARGs and mobile genetic elements in pig manure applied soil-water continuum indicate that the application of organic matter could accelerate the emergence and dissemination of ARGs. These findings suggested that flooding represents a crucial pathway for dispersal of ARGs from the soil to the overlying water. Identification of highly mobile ARGs in the soil-water continuum is essential for assessing their potential risk to human health and promoting the development of sustainable agricultural practices to mitigate their spread.
Collapse
Affiliation(s)
- Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Chen-Xi Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Yi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - An-Qi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Zhang Y, Zhao J, Chen M, Tang X, Wang Y, Zou Y. Fecal antibiotic resistance genes were transferred through the distribution of soil-lettuce-snail food chain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87793-87809. [PMID: 37434056 DOI: 10.1007/s11356-023-28606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Massive antibiotic resistance genes (ARG) were detected in the soil modified by manure, which may affect human life safety through the food chain. However, the transmission of ARGs through the soil-plant-animal food chain is still unclear. Therefore, this study used high-throughput quantitative PCR technology to explore the effects of pig manure application on ARGs and bacterial communities in soil, lettuce phyllosphere, and snail excrement. The results showed that a total of 384 ARGs and 48 MEGs were detected in all samples after 75 days of incubation. The diversity of ARGs and MGEs in soil components increased significantly by 87.04% and 40% with the addition of pig manure. The absolute abundance of ARGs in the phyllosphere of lettuce was significantly higher than that of the control group, with a growth rate of 212.5%. Six common ARGs were detected between the three components of the fertilization group, indicating that there was internal transmission of fecal ARGs between the trophic levels of the food chain. Firmicutes and Proteobacteria were identified as the dominant host bacteria in the food chain system, which were more likely to be used as carriers of ARGs to promote the spread of resistance in the food chain. The results were used to assess the potential ecological risks of livestock and poultry manure. It provides theoretical basis and scientific support for the formulation of ARG prevention and control policies.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Jiayi Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Minglong Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinyue Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yijia Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yun Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
14
|
Liu Y, Wu B, Cui X, Ren Q, Ren T, Zhou Y. Distribution and dynamics of antibiotic resistance genes in a three-dimensional multifunctional biofilm during greywater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121533. [PMID: 36997145 DOI: 10.1016/j.envpol.2023.121533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Antibiotic resistance genes (ARGs) have been identified as serious threats to public health. Despite the widespread in various systems, dynamics of ARGs in three-dimensional multifunctional biofilm (3D-MFB) treating greywater are largely undefined. This work tracked the distributions and dynamics of eight target genes (intI1, korB, sul1, sul2, tetM, ermB, blaCTX-M and qnrS) in a 3D-MFB during greywater treatment. Results showed that hydraulic retention times at 9.0 h achieved the highest linear alkylbenzene sulfonate (LAS) and total nitrogen removal rates at 99.4% and 79.6%, respectively. ARGs presented significant liquid-solid distribution feature, but non-significant with biofilm position. Intracellular ARGs (predominant by intI1, korB, sul1 and sul2) at bottom biofilm were 210- to 4.2 × 104- fold higher than that in cell-free liquid. Extracellular polymeric substances (EPS)-attached LAS showed linear relationship with most of ARGs (R2 > 0.90, P < 0.05). Sphingobacteriales, Chlamydiales, Microthrixaceae, SB-1, Cryomorphaceae, Chitinophagaceae, Leadbetterella and Niabella were tightly bound up with target ARGs. Key is that EPS-attached LAS considerably determines the occurrence of ARGs, and microbial taxa play an important role in the dissemination of ARGs in the 3D-MFB.
Collapse
Affiliation(s)
- Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingqing Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|