1
|
Wang Y, Wang J, Long Z, Sun Z, Lv L, Liang J, Zhang G, Wang P, Gao W. MnCe-based catalysts for removal of organic pollutants in urban wastewater by advanced oxidation processes - A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122773. [PMID: 39388818 DOI: 10.1016/j.jenvman.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
With Advanced oxidation processes (AOPs) widely promoted, MnCe-based catalysts have received extensive attention under the advantages of high efficiency, stability and economy for refractory organic pollutants present in urban wastewater. Driven by multiple factors such as environmental pollution, technological development, and policy promotion, a systematic review of MnCe-based catalysts is urgently needed in the current research situation. This research provides a critical review of MnCe-based catalysts for removal of organic pollutants in urban wastewater by AOPs. It is found that co-precipitation and sol-gel methods are more appropriate methods for catalyst preparation. Among a host of influence factors, catalyst composition and pH are crucial in the catalytic oxidation processes. The synergistic effect of the free radical pathway and surface catalysis results in better pollutants degradation. It is more valuable to utilize multiple systems for oxidation (e.g., photo-Fenton technology) to improve the catalytic efficiency. This review provides theoretical guidance for MnCe-based catalysts and offers a reference direction for future research in the AOPs of organic pollutants removal from urban wastewater.
Collapse
Affiliation(s)
- Yuting Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiaqing Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zeqing Long
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Zhi Sun
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jinsong Liang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
2
|
Niu Y, Zhang Q, Wang L, Guo F, Zhang Y, Wu J. Synthesis of Fe-N doped porous carbon/silicate composites regulated by minerals in coal gasification fine slag for synergistic electrocatalytic treatment of phenolic wastewater. ENVIRONMENTAL RESEARCH 2024; 251:118643. [PMID: 38458590 DOI: 10.1016/j.envres.2024.118643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Coal gasification fine slag (CGFS), as a difficult-to-dispose solid waste in the coal chemical industry, consists of minerals and residual carbon. Due to the aggregate structure of minerals blocking pores and encapsulating active substances, the high-value utilization of CGFS still remains a challenge. Based on the intrinsic characteristics of CGFS, this study synthesized Fe-N doped porous carbon/silicate composites (Fe-NC) by alkali activation and pyrolysis for electrocatalytic degradation of phenolic wastewater. Meanwhile, minerals were utilized to regulate the surface chemical and pore structure, turning their disadvantages into advantages, which caused a sharp increase in m-cresol mineralization. The positive effect of minerals on composite properties was investigated by characterization techniques, electrochemical analyses and density functional theory (DFT) calculations. It was found that the mesoporous structure of the mineral-regulated composites was further developed, with more carbon defects and reactive substances on its surface. Most importantly, silicate mediated iron conversion through strong interaction with H2O2, high work function gradient with electroactive iron, and excellent superoxide radical (•O2-) production capacity. It effectively improved the reversibility and kinetics of the entire electrocatalytic reaction. Within the Fe-NC311 electrocatalytic system, the m-cresol removal rate reached 99.55 ± 1.24%, surpassing most reported Fe-N-doped electrocatalysts. In addition, the adsorption and electrooxidation experiment confirmed that the synergistic effect of Fe-N doped porous carbon and silicate simultaneously promoted the capture of pollutants and the transformation of electroactive molecules, and hence effectively shortened the diffusion path of short-lived radicals, which was further supported by molecular dynamics simulation. Therefore, this research provides new insights into the problem of mineral limitations and opens an innovative approach for CGFS recycling and environmental remediation.
Collapse
Affiliation(s)
- Yanjie Niu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Qiqi Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Li Wang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Fanhui Guo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Yixin Zhang
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Jianjun Wu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, PR China.
| |
Collapse
|
3
|
Wang Q, Zhao Y, Song J, Niu J, Liu Y, Chao C. How halogenated aromatic compounds affect the electron supply and consumption in glucose supported denitrification? WATER RESEARCH 2024; 256:121569. [PMID: 38615604 DOI: 10.1016/j.watres.2024.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Halogenated aromatic compounds possess bidirectional effects on denitrifying bio-electron behavior, providing electrons and potentially interfering with electron consumption. This study selected the typical 4-chlorophenol (4-CP, 0-100 mg/L) to explore its impact mechanism on glucose-supported denitrification. When COD(glucose)/COD(4-CP)=28.70-3.59, glucose metabolism remained the dominant electron supply process, although its removal efficiency decreased to 73.84-49.66 %. When COD(glucose)/COD(4-CP)=2.39-1.43, 4-CP changed microbial carbon metabolism priority by inhibiting the abundance of glucose metabolizing enzymes, gradually replacing glucose as the dominant electron donor. Moreover, 5-100 mg/L 4-CP reduced adenosine triphosphate (ATP) by 15.52-24.67 % and increased reactive oxygen species (ROS) by 31.13-63.47 %, causing severe lipid peroxidation, thus inhibiting the utilization efficiency of glucose. Activated by glucose, 4-CP dechlorination had stronger electron consumption ability than NO2--N reduction (NO3--N > 4-CP > NO2--N), combined with the decreased nirS and nirK genes abundance, resulting in NO2--N accumulation. Compared with the blank group (0 mg/L 4-CP), 5-40 mg/L and 60-100 mg/L 4-CP reduced the secretion of cytochrome c and flavin adenine dinucleotides (FAD), respectively, further decreasing the electron transfer activity of denitrification system. Micropruina, a genus that participated in denitrification based on glucose, was gradually replaced by Candidatus_Microthrix, a genus that possessed 4-CP degradation and denitrification functions after introducing 60-100 mg/L 4-CP.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chunfang Chao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Yang L, Liu Y, Zhang A, Liu Z, Yang Z, Li X, Li Z. Construction of aldehyde-based, ester-based hyper-cross-linked polar resin and its selective adsorption mechanism for phenol in coal chemical wastewater. ENVIRONMENTAL RESEARCH 2024; 246:118140. [PMID: 38199467 DOI: 10.1016/j.envres.2024.118140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Efficient and precise recovery of phenol from coal chemical wastewater (CCW) poses a significant challenge, prompting the development of a novel aldehyde-based, ester-based hyper-cross-linked polar resin (DES-COOC-CHO) in this study. Two distinct functional group modification methods were employed to enhance the screening effect of the resin. SEM, FT-IR, NMR, XPS, and BET characterizations confirmed the successful construction of the hyper-cross-linked polar resin, incorporation aldehyde and ester groups, exhibiting a special surface area of 627.2 m2/g and a microporous specific surface area percentage of 29.94%. DES-COOC-CHO adhered to the pseudo-second-order kinetic model and Langmuir model (maximum adsorption capacity of 118.0 mg/g). Its adsorption of phenol was spontaneous chemisorption, monolayer adsorption. Notably, even after undergoing 20 adsorption-desorption cycles, the resin maintained a stable adsorption capacity, showcasing excellent recoverability. In the presence of phenols sharing similar properties, DES-COOC-CHO exhibited superior selectivity for phenol. In real CCW, it achieved a remarkable 90% selective removal rate of phenol. The primary selective mechanism relied on the hydrogen bonding effect facilitated by aldehyde and ester groups, coupled with microporous sieving of appropriate size. In comparison with other adsorbent materials, DES-COOC-CHO exhibited superior adsorption properties, coupled with a cost-effective preparation process, presenting significant potential for practical applications.
Collapse
Affiliation(s)
- Leyu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhuangzhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Xiaowei Li
- Yishuiyuan Biotechnology (Xi'an) Co., Ltd., Xi'an, 710018, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
5
|
Fang Y, Lin G, Liu Y, Zhang J. Advanced treatment of antibiotic-polluted wastewater by a consortium composed of bacteria and mixed cyanobacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123293. [PMID: 38184153 DOI: 10.1016/j.envpol.2024.123293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
This study constructed a cyanobacteria-bacteria consortium using a mixture of non-toxic cyanobacteria (Synechococcus sp. and Chroococcus sp.) immobilized in calcium alginate and native bacteria in wastewater. The consortium was used for the advanced treatment of sulfamethoxazole-polluted wastewater and the production of cyanobacterial lipid. Mixed cyanobacteria increased the abundances of denitrifying bacteria and phosphorus-accumulating bacteria as well as stimulated various functional enzymes in the wastewater bacterial community, which efficiently removed 70.01-71.86% of TN, 91.45-97.04% of TP and 70.72-76.85% of COD from the wastewater. The removal efficiency of 55.29-69.90% for sulfamethoxazole was mainly attributed to the upregulation of genes encoding oxidases, reductases, oxidoreductases and transferases in two cyanobacterial species as well as the increased abundances of Stenotrophomonas, Sediminibacterium, Arenimonas, Novosphingobium, Flavobacterium and Hydrogenophaga in wastewater bacterial community. Transcriptomic responses proved that mixed cyanobacteria presented an elevated lipid productivity of 33.90 mg/L/day as an adaptive stress response to sulfamethoxazole. Sediminibacterium, Flavobacterium and Exiguobacterium in the wastewater bacterial community may also promote cyanobacterial lipid synthesis through symbiosis. Results of this study proved that the mixed cyanobacteria-bacteria consortium was a promising approach for advanced wastewater treatment coupled to cyanobacterial lipid production.
Collapse
Affiliation(s)
- Youshuai Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Guannan Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
6
|
Gu Y, Dai P, Wu T, Yuan F, Yang Q. A novel physical-biochemical treatment of refinery wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120356. [PMID: 38377757 DOI: 10.1016/j.jenvman.2024.120356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/12/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
As of 2022, China has achieved a crude oil processing capacity of 918 million tons, leading to a notable escalation in the production of refinery wastewater. The composition of refinery wastewater is intricate and diverse, posing a substantial challenge to its treatment. In order to facilitate appropriate discharge or reuse, an exhaustive separation process is imperative for refinery wastewater. Conventional pre-treatment processes typically employ inclined plate separators and dissolved air flotation (DAF) for the removal of oil and suspended solids (SS), while sequencing batch reactor (SBR), oxidation ditch, or biological aerated filter (BAF) are employed for the biological treatment process. However, these approaches encounter challenges such as a large spatial footprint, suboptimal treatment efficiency, and high energy consumption. In response to these challenges, this study introduces a novel integrated apparatus consisting of a high-efficiency oil remover (HEOR), coalescence oil remover (COR), and an airlift-enhanced loop bioreactor (AELR). A pilot-scale test was conducted to evaluate the performance of this integrated system in practical field applications. The pilot-scale tests reveal that, without the addition of chemical agents, the petroleum removal efficiency of "HEOR + COR" system was 1.2 times that of DAF. Compared with the SBR system, AELR's volume loading was increased by 1.56 times. The effluent quality achieved in the pilot-scale tests attained parity with that the original process. The "HEOR + COR + AELR" system exhibited energy and carbon emissions reduction of 28% and 30% compared to the "DAF + SBR" system, respectively. Therefore, the operating costs was reduced by approximate 1 Chinese Yuan (CNY) per ton of treated water. This technological advancement serves as a valuable reference for the implementation of low-carbon treatment of refinery wastewater.
Collapse
Affiliation(s)
- Yong Gu
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Pinyi Dai
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Tao Wu
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fang Yuan
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Qiang Yang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
7
|
Yang Z, Liu Y, Liu P, Yang L, Zhang A, Liu Z, Li X, Li Z. Study on material structure design, selective adsorption mechanism, and application for adsorption recovery of oil substances in coal chemical wastewater. CHEMOSPHERE 2024; 349:140943. [PMID: 38096992 DOI: 10.1016/j.chemosphere.2023.140943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
In response to the problem of high emulsified and dissolved oils being difficult to recovery from coal chemical wastewater (CCW), this study specifically constructed a non-polar, macropore, and hydrophobic adsorption material (pSt-X) based on the main components of these two oils (aromatics and phenols) for selective recovery. The results revealed that pSt-X had an adsorption capacity of 215.52 mg/g, which had remained stable for multiple recycling sessions, with an adsorption capacity constantly above 95 %. The pSt-X has significantly larger particle size (0.7 mm-1.2 mm), which simplifies the process of adsorption regeneration and effectively prevents the loss of the adsorbent powder problem. The pSt-X adsorbent demonstrated remarkable selectivity towards dissolved and emulsified oils, exhibiting removal rates of 90.2 % and 81.7 %, respectively. Moreover, pSt-X proved remarkable selectivity in removing aromatic hydrocarbons (AHs) and phenols, with impressive removal rates of 77.8 % and 85.9 %, respectively. The selective separation mechanism of pSt-X for oil substances was further analyzed, indicating that its selective adsorption of oils was primarily driven by hydrophobic, π-π, and hydrogen bonding interactions owing to its non-polar and macropore structure and hydrophobic properties. The results of this study provide solid theoretical support for green and low-carbon recovery of oil substances in CCW and are of positive practical importance for clean production in the coal chemical industry.
Collapse
Affiliation(s)
- Zhuangzhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Pan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaowei Li
- Yishuiyuan Biotechnology (Xi'an) Co., Ltd., Xi'an, 710018, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
8
|
Xiang P, Ma P, He Q, Song Z, Miao Z. Enhanced removal of phenol and chemical oxygen demand from coking wastewater using micro and nano bubbles: Microbial community and metabolic pathways. BIORESOURCE TECHNOLOGY 2024; 394:130207. [PMID: 38109978 DOI: 10.1016/j.biortech.2023.130207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
The treatment of coking wastewater with high phenol concentrations has been a challenge for conventional biological treatment technology. In this short communication, phenol-degrading bacteria domesticated by micro and nano bubbles (MNBs) water are used to treat the high- concentration phenol in an MNBs aeration reactor (MNB-AR). The results show that the MNB-AR can greatly improve the removal of phenol and chemical oxygen demand (COD). At a phenol concentration of 1000 mg L-1, the phenol and COD removal rates in the MNB-AR are 55 % and 39 % higher than in the conventional bubble aeration reactor respectively. MNB-AR performs more stably and reaches a higher phenol tolerance under fluctuating high-phenol-concentration loadings. Metagenomic analysis shows that MNBs promote the growth and metabolism of aerobic microorganisms related to phenol degradation, and enhance gene abundance related to carbon metabolism. MNBs aeration combined with microorganisms is an efficient solution for treating coking wastewater.
Collapse
Affiliation(s)
- Pengxu Xiang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
| | - Ping Ma
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
| | - Qiongqiong He
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221008, Jiangsu, China.
| | - Zhaoyang Song
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
| | - Zhenyong Miao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221008, Jiangsu, China
| |
Collapse
|
9
|
Tang H, Liu Y, Liu X, Zhang A, Yang R, Han Y, Liu P, He HB, Li Z. Regulation methods and enhanced mechanism on the efficient degradation of aromatics in biochemical treatment system of coal chemical wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119358. [PMID: 37890402 DOI: 10.1016/j.jenvman.2023.119358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
In order to address the problems of poor treatment effect of coal chemical wastewater (CCW) biochemical treatment system resulting in non-compliance with effluent standards and unstable operation, a combination regulation method of co-substrate metabolism and predominant flora enhancement was constructed, and the performance and mechanism of enhanced degradation of aromatics in CCW was also investigated in this study. The results showed that when the influent concentration of chemical oxygen demand (COD) and aromatics was less than 600 mg/L and 180 mg/L respectively, there was no significant effect of the combined regulation method on the enhanced treatment of aromatics, the removal rate of total organic carbon (TOC) in the system could all more than 73%; while when the influent concentration of COD increased to 800 mg/L and the aromatics concentration increased to more than 240 mg/L, the ordinary activated sludge system had collapsed. Compared with the regulation method of co-substrate metabolism alone, the combination regulation method increased the removal rate of TOC by 21%. The analysis of antioxidant enzyme activity showed that under the combination regulation method, the antioxidant enzyme activity of microorganisms was higher and their resistance to adverse environments was stronger. EPS and dehydrogenase analysis indicated that the combination regulation method was more conducive to microbial degradation of aromatics. Meanwhile, the analysis of microbial community structure showed that the aromatics degradation bacteria genera Rhodococcus, Luteococcus, etc. were enriched under the combination regulation method. The study provides a theoretical basis and technical guidance for solving the problems of unstable operation of CCW biochemical treatment systems and non-compliance with effluent standards.
Collapse
Affiliation(s)
- Hui Tang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xingshe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Rushuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yulu Han
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Pan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Hao Bo He
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|