1
|
Benner L, Breidenbach LR, Daniels B, Goessler W, Stanisavljević L, Pavlović R, Zarić NM. Assessing metal contamination using bumblebees and honey bees - Complementary roles in biomonitoring. ENVIRONMENTAL RESEARCH 2025; 279:121917. [PMID: 40404086 DOI: 10.1016/j.envres.2025.121917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/12/2025] [Accepted: 05/20/2025] [Indexed: 05/24/2025]
Abstract
Metal pollution poses a significant risk to ecosystems and public health, which is why effective monitoring tools are needed. Honey bees (Apis mellifera) are often used as biomonitors due to their large foraging range and ease of sampling. However, as they are domesticated, eusocial insects with perennial colonies, they may not be representative of all bee species. In this study, the bufftailed bumblebee (Bombus terrestris), a native wild pollinator with distinct ecological characteristics, is evaluated as a complementary or alternative biomonitor. Bumblebees forage over shorter distances and have a more diverse diet, offering the potential for higher spatial resolution in pollution studies. Honey bee and bumblebee colonies were sampled near Aachen, Germany. Bumblebees showed higher concentrations of S, Cu, Zn, As, Se, Mo and Ba compared to honey bees. Honey bees had higher concentrations of Al, K, Ca, Rb, Cd, Sn and Cs compared to bumblebees. Bumblebees generally collect more nutrient-rich food, which is confirmed by the higher proportion of essential and beneficial elements in bumblebees (S, Cu, Zn and Se) compared to honey bees (K and Ca). Contamination indices showed similar pollution levels for most elements, although bumblebees showed localized pollution sources. Both species are effective biomonitors: honey bees provide broader area assessments, while bumblebees offer finer spatial resolution and operate at lower temperatures. Together, they enable a multi-level monitoring approach, with honey bees indicating general pollution trends and bumblebees detecting local sources.
Collapse
Affiliation(s)
- Lena Benner
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074, Aachen, Germany
| | - Leonie Rabea Breidenbach
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074, Aachen, Germany
| | - Benjamin Daniels
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074, Aachen, Germany
| | - Walter Goessler
- University of Graz, Institute of Chemistry, Analytical Chemistry for Health and Environment, Universitätsplatz 1, 8010, Graz, Austria
| | - Ljubiša Stanisavljević
- University of Belgrade - Faculty of Biology, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Ratko Pavlović
- University of Belgrade - Faculty of Chemistry, Studentski trg 16, 11000, Belgrade, Serbia
| | - Nenad M Zarić
- University of Belgrade - Faculty of Biology, Studentski trg 12-16, 11000, Belgrade, Serbia; Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430, Tulln, Austria.
| |
Collapse
|
2
|
Zarić NM, Brodschneider R, Goessler W. Sex-specific element accumulation in honey bees (Apis mellifera). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10348-10355. [PMID: 38472584 PMCID: PMC11996938 DOI: 10.1007/s11356-024-32822-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Honey bees are social insects that show division of labor and sexual dimorphism. Female honey bees differentiate in two different castes, queens or worker bees, while males are called drones. Worker bees have different tasks in the hive including collection of food, its processing, caring for brood, protecting the hive, or producing wax. The drones' only role is to mate with a virgin queen. Many studies have dealt with differences in physiology, behavior, and morphology of workers and drones. This is the first study that demonstrates differences in element accumulation and composition between workers and drones honey bees. Using inductively coupled plasma mass spectrometry, we found that worker honey bees have higher concentrations of most elements analyzed. Drones had higher concentrations of elements essential to bees, Na, P, S, Zn, Cu, and especially Se (2.2 × higher), which is known to be important for sperm quality and fertility in many animals. Until now higher Se content was not observed in male insects. These differences can be attributed to different environmental exposure, reproductive role of drones, but mostly to the food workers and drones consume. Worker bees feed on bee bread, which is rich in minerals. Drones are fed food pre-processed by worker bees.
Collapse
Affiliation(s)
- Nenad M Zarić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia.
- Analytical Chemistry for Health and Environment, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria.
| | - Robert Brodschneider
- Institute of Biology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria
| | - Walter Goessler
- Analytical Chemistry for Health and Environment, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| |
Collapse
|
3
|
Meza-Figueroa D, Berrellez-Reyes F, Schiavo B, Morton-Bermea O, Gonzalez-Grijalva B, Inguaggiato C, Silva-Campa E. Tracking fine particles in urban and rural environments using honey bees as biosamplers in Mexico. CHEMOSPHERE 2024; 363:142881. [PMID: 39032733 DOI: 10.1016/j.chemosphere.2024.142881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
This work explores the efficiency of honey bees (Apis mellifera) as biosamplers of metal pollution. To understand this, we selected two cities with different urbanization (a medium-sized city and a megacity), and we collected urban dust and honey bees captured during flight. We sampled two villages and a university campus as control areas. The metal content in dust was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Atomic Force Microscopy (AFM) and Scanning electron microscopy (SEM) were used to investigate the shape and size distribution of the particles, and to characterize the semiquantitative chemical composition of particles adhered to honey bee's wings. Principal Component Analysis (PCA) shows a distinctive urban dust geochemical signature for each city, with component 1 defining V-Cr-Ni-Tl-Pt-Pb-Sb as characteristic of Mexico City and Ce-As-Zr for dust from Hermosillo. Particle count using SEM indicates that 69% and 63.4% of the resuspended dust from Hermosillo and Mexico City, respectively, corresponds to PM2.5. Instead, the particle count measured on the honey bee wings from Hermosillo and Mexico City is mainly PM2.5, 91.4% and 88.9%, respectively. The wings from honey bees collected in the villages and the university campus show much lower particle amounts. AFM-histograms confirmed that the particles identified in Mexico City have even smaller sizes (between 60 and 480 nm) than those in Hermosillo (between 400 and 1400 nm). Particles enriched in As, Zr, and Ce mixed with geogenic elements such as Si, Ca, Mg, K, and Na dominate honey bee' wings collected in Hermosillo. In contrast, those particles collected from Mexico City contain V, Cr, Ni, Tl, Pt, Pb, and Sb. Such results agree with the urban dust data. This work shows that honey bees are suitable biosamplers for the characterization of fine dust fractions by microscopy techniques and reflect the urban pollution of the sites.
Collapse
Affiliation(s)
- Diana Meza-Figueroa
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas, Centro, Hermosillo, 83000, Sonora, Mexico.
| | - Francisco Berrellez-Reyes
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas, Centro, Hermosillo, 83000, Sonora, Mexico
| | - Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Ofelia Morton-Bermea
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas, Centro, Hermosillo, 83000, Sonora, Mexico
| | - Claudio Inguaggiato
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana, 3918, Ensenada, Baja California, Mexico
| | - Erika Silva-Campa
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, Centro, Hermosillo, 83000, Sonora, Mexico
| |
Collapse
|
4
|
Ibañez-Del Rivero C, Wheeler CA, Fry KL, Taylor MP. Portable X-ray fluorescence spectrometry: a cost-effective method for analysing trace metals in deposited dust. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5038-5048. [PMID: 38985328 DOI: 10.1039/d4ay00368c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
For projects requiring extensive environmental sampling and rapid decision-making to identify trace metal contamination using dust wipes, the cost and time required for wet chemistry analysis can be prohibitive. Under such circumstances there is a need for a suitable screening method that is cost-effective, efficient, and portable. To address this need, this study investigated the utility of portable X-ray fluorescence (pXRF) for the analysis of trace metals in dust wipes. Here, 316 dust wipe samples from three different geographical settings co-located with mining and smelting operations were investigated for their trace metal loadings (μg m-2) of arsenic (As), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) using pXRF. Results collected using pXRF were compared against inductively coupled plasma mass spectrometry (ICP-MS) concentrations using matched dust wipes (n = 87) to assess reproducibility. A subset of dust wipes (n = 4) were subject to different pXRF analytical scenarios (ranging from 1 to 12 pXRF measurements) using a standardised test duration of 30 seconds to identify the most efficient number of tests for analytical precision. Conducting four pXRF tests on a single wipe (total exposure time of 120 seconds) returned comparable results to ICP-MS and was adopted for analysis of all samples. Results from dust wipes analysed with both ICP-MS and pXRF (n = 87) showed moderate to strong Spearman Rho correlations (rs = 0.489-0.956, p < 0.01) and linear regression coefficients of variation demonstrated good agreement between methods (R2 = 0.432-0.989, p < 0.05). Linear regression equations were used to correct pXRF data to the ICP-MS dust wipe data for samples analysed by both approaches, and applied to pXRF data that were not subject to ICP-MS analysis (n = 229). Application of the correction formula resulted in a substantial improvement of pXRF's accuracy and precision, confirming its effectiveness for assessing trace metals in dust wipes.
Collapse
Affiliation(s)
- Carlos Ibañez-Del Rivero
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Cassandra A Wheeler
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Kara L Fry
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
- Environment Protection Authority Victoria, EPA Science, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia.
| | - Mark Patrick Taylor
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
- Environment Protection Authority Victoria, EPA Science, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia.
| |
Collapse
|
5
|
Pavlović R, Brodschneider R, Goessler W, Stanisavljević L, Vujčić Z, Zarić NM. Micronutrient Deficiency May Be Associated with the Onset of Chalkbrood Disease in Honey Bees. INSECTS 2024; 15:269. [PMID: 38667399 PMCID: PMC11050715 DOI: 10.3390/insects15040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Chalkbrood is a disease of honey bee brood caused by the fungal parasite Ascosphaera apis. Many factors such as genetics, temperature, humidity and nutrition influence the appearance of clinical symptoms. Poor nutrition impairs the immune system, which favors the manifestation of symptoms of many honey bee diseases. However, a direct link between dietary ingredients and the symptoms of chalkbrood disease has not yet been established. We show here that the elemental composition of chalkbrood mummies and healthy larvae from the same infected hives differ, as well as that mummies differ from larvae from healthy hives. Chalkbrood mummies had the highest concentration of macroelements such as Na, Mg, P, S, K and Ca and some microelements such as Rb and Sn, and at the same time the lowest concentration of B, As, Sr, Ag, Cd, Sb, Ba and Pb. Larvae from infected hives contained less Pb, Ba, Cs, Sb, Cd, Sr, As, Zn, Cu, Ni, Co, Mn, Cr, V and Al in contrast to healthy larvae from a disease-free apiary. This is the first study to demonstrate such differences, suggesting that an infection alters the larval nutrition or that nutrition is a predisposition for the outbreak of a chalkbrood infection. Though, based on results obtained from a case study, rather than from a controlled experiment, our findings stress the differences in elements of healthy versus diseased honey bee larvae.
Collapse
Affiliation(s)
- Ratko Pavlović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (R.P.); (Z.V.)
| | - Robert Brodschneider
- Department of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Walter Goessler
- Analytical Chemistry for Health and Environment, Institute of Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria;
| | - Ljubiša Stanisavljević
- Faculty of Biology, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Zoran Vujčić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (R.P.); (Z.V.)
| | - Nenad M. Zarić
- Analytical Chemistry for Health and Environment, Institute of Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria;
- Faculty of Biology, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| |
Collapse
|