1
|
Bai F, Fan J, Zhang X, Wang X, Liu S. Biodegradation of polyethylene with polyethylene-group-degrading enzyme delivered by the engineered Bacillus velezensis. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137330. [PMID: 39862780 DOI: 10.1016/j.jhazmat.2025.137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Microplastics (MPs) pose an emerging threat to vegetable growing soils in Harbin, which have a relatively high abundance (11,065 n/kg) with 17.26 of potential ecological risk of single polymer hazard (EI) and 33.92 of potential ecological risk index (PERI). Polyethylene (PE) is the main type of microplastic pollution in vegetable growing soils in Harbin. In this study, the engineered Bacillus velezensis with polyethylene-group-degrading enzyme pathway (BCAv-PEase) was constructed to enhance the degradation of MPs of PE (PE-MPs). BCAv-PEase increased the biodegradation of PE-MPs, promoted weight loss of PE films, elevated surface tension, and decreased the surface hydrophobicity of PE through upregulating activities of depolymerases, dehydrogenase, and catalase. Mechanism analysis showed that BCAv-PEase degraded PE-MPs by promoting the secretion of PEase, thereby leading to the generation of new oxygenated functional groups within the PE-MPs substrate, which further accelerated the metabolic pathway of PE-MPs. The analysis of the microbial community during the PE-MPs degradation processes revealed that BCAv-PEase emerged as the principal bacterial player and stimulated the abundance of microbes and functional genes associated with the biodegradation of PE. In conclusion, this study provides a potential mechanism for biodegradation of PE-MPs mediated by BCAv-PEase via modulating substrate selectivity and optimizing biocatalytic pathways.
Collapse
Affiliation(s)
- Fuliang Bai
- School of Geographical Science, Harbin Normal University, Harbin 150025, China.
| | - Jie Fan
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Xiangyu Zhang
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Xuemeng Wang
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Shuo Liu
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
2
|
Vital-Vilchis I, Karunakaran E. Using Insect Larvae and Their Microbiota for Plastic Degradation. INSECTS 2025; 16:165. [PMID: 40003794 PMCID: PMC11856541 DOI: 10.3390/insects16020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Plastic pollution is one of the biggest current global threats to the environment given that petroleum-based plastic is recalcitrant and can stay in the environment for decades, even centuries, depending on the specific plastic type. Since less than 10% of all plastic made is recycled, and the other solutions (such as incineration or landfill storage) are pollutant methods, new, environmentally friendly solutions are needed. In this regard, the latest biotechnological discovery on this topic is the capability of insect larvae to use plastic polymers as carbon feedstock. This present review describes the most relevant information on the insect larvae capable of degrading plastic, mainly Galleria mellonella (Fabricius, 1798), Tenebrio molitor (Linnaeus, 1758), and Zophobas atratus (Fabricius, 1776), and also adds new information about other less commonly studied "plastivore" insects such as termites. This review covers the literature from the very first work describing plastic degradation by larvae published in 2014 all the way to the very latest research available (till June 2024), focusing on the identification of a wide variety of plastic-degrading microorganisms isolated from larvae guts and on the understanding of the potential molecular mechanisms present for degradation to take place. It also describes the latest discoveries, which include the identification of novel enzymes from waxworm saliva.
Collapse
Affiliation(s)
| | - Esther Karunakaran
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK;
| |
Collapse
|
3
|
Mendoza JE, Tineo D, Chuquibala-Checan B, Atalaya-Marin N, Taboada-Mitma VH, Tafur-Culqui J, Tarrillo E, Gómez-Fernández D, Goñas M, Reyes-Reyes MA. Global perspectives on the biodegradation of LDPE in agricultural systems. Front Microbiol 2025; 15:1510817. [PMID: 39839104 PMCID: PMC11748793 DOI: 10.3389/fmicb.2024.1510817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
The increasing use of plastics globally has generated serious environmental and human health problems, particularly in the agricultural sector where low-density polyethylene (LDPE) and other plastics are widely used. Due to its low recycling rate and slow degradation process, LDPE is a major source of pollution. This paper addresses the problem of plastic accumulation in agriculture, focusing on LDPE biodegradation strategies. The studies reviewed include recent data and the methodologies used include state-of-the-art technologies and others that have been used for decades, to monitor and measure the degree of biodegradation that each treatment applied can have, including SEM, GCMS, HPLC, and microscopy. The countries investigating these biodegradation methodologies are identified, and while some countries have been developing them for some years, others have only begun to address this problem in recent years. The use of microorganisms such as bacteria, fungi, algae, and insect larvae that influence its decomposition is highlighted. A workflow is proposed to carry out this type of research. Despite the advances, challenges remain, such as optimizing environmental conditions to accelerate the process and the need for further research that delves into microbial interactions in various environmental contexts.
Collapse
Affiliation(s)
- Jani E. Mendoza
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Daniel Tineo
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Beimer Chuquibala-Checan
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Nilton Atalaya-Marin
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Victor H. Taboada-Mitma
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Josué Tafur-Culqui
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Ever Tarrillo
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Darwin Gómez-Fernández
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Malluri Goñas
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias (DSME), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - María Andrea Reyes-Reyes
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta, Colombia
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal (CODEIM), Universidad Industrial de Santander (UIS), Bucaramanga, Colombia
| |
Collapse
|
4
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
5
|
Gorish BMT, Abdelmula WIY, Sethupathy S, Dar MA, Shahnawaz M, Zhu D. Microbial degradation of polyethylene polymer: current paradigms, challenges, and future innovations. World J Microbiol Biotechnol 2024; 40:399. [PMID: 39617798 DOI: 10.1007/s11274-024-04211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Polyethylene (PE) is the second most commonly used plastic worldwide, mainly used to produce single-use items such as bags and bottles. Its significant resistance to natural biodegradation results in the accumulation of PE in landfills, leading to various ecological and toxicological consequences. Despite extensive research on the microbial degradation of PE, achieving complete biodegradation remains a challenge. Comparing experimental outcomes is complicated by the diverse array of microbes involved in PE biodegradation, variations in culture conditions, and differences in assessment tools. This review discusses the critical hurdles in PE biodegradation experiments, including the chemical complexity of PE substrates and the challenges of isolating effective microbes and forming stable consortia. The review also delves into the difficulties in accurately assessing microbial metabolic activity and understanding the biochemical pathways involved in PE degradation. Furthermore, it addresses the pressing issues of metabolic byproducts, slow degradation rates, scalability concerns, and the challenges in measuring biodegradation levels effectively. In addition to outlining the technical challenges associated with PE experiments, this review offers recommendations for future research directions to enhance PE biodegradation outcomes. Overcoming these challenges and implementing the proposed future strategies will improve the reliability, comparability, and practicality of current PE biodegradation experiments, ultimately contributing to better comprehension and management of PE waste in the environment.
Collapse
Affiliation(s)
- Babbiker Mohammed Taher Gorish
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Waha Ismail Yahia Abdelmula
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Sivasamy Sethupathy
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Mudasir A Dar
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Mohd Shahnawaz
- Department of Botany, Govt. Degree College Drass, A Constituent College of University of Ladakh, Drass, Ladakh, 194102, India
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
6
|
Ragu Prasath A, Selvam K, Sudhakar C. Biodegradation of low-density polyethylene film by Bacillus gaemokensis strain SSR01 isolated from the guts of earthworm. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:159. [PMID: 38592645 DOI: 10.1007/s10653-024-01925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/20/2024] [Indexed: 04/10/2024]
Abstract
In recent years, low-density polyethylene (LDPE) has emerged as an essential component of the routine tasks that people engage in on a daily basis. However, over use of it resulted in environmental buildup that contaminated aquatic habitats and human health. Biodegradation is the most effective way for controlling pollution caused by synthetic plastic waste in a sustainable manner. In the present study, the LDPE degrading bacterial strain was screened from gut of Earthworms collected from plastic waste dumped area Mettur dam, Salem district, Tamil Nadu, India. The LDPE degrading bacterial strain was screened and identified genotypically. The LDPE degrading Bacillus gaemokensis strain SSR01 was submitted in NCBI. The B. gaemokensis strain SSR01 bacterial isolate degraded LDPE film after 14 days of incubation and demonstrated maximum weight loss of up to 4.98%. The study of deteriorated film using attenuated total reflection-Fourier transform infrared revealed the presence of a degraded product. The degradation of LDPE film by B. gaemokensis strain SSR01 was characterized by field-emission scanning electron microscopy analysis for surface alterations. The energy dispersive X-ray spectroscopy test confirmed that the broken-down LDPE film had basic carbon reduction. The present study of LDPE flim biodegradation by B. gaemokensis strain SSR01 has acted as a suitable candidate and will help in decreasing plastic waste.
Collapse
Affiliation(s)
- Arunagiri Ragu Prasath
- Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637 501, India
| | - Kandasamy Selvam
- Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637 501, India.
| | - Chinnappan Sudhakar
- Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637 501, India
| |
Collapse
|