1
|
Abstract
Wildfire smoke (WFS) is a mixture of respirable particulate matter, environmental gases, and other hazardous pollutants that originate from the unplanned burning of arid vegetation during wildfires. The increasing size and frequency of recent wildfires has escalated public and occupational health concerns regarding WFS inhalation, by either individuals living nearby and downstream an active fire or wildland firefighters and other workers that face unavoidable exposure because of their profession. In this review, we first synthesize current evidence from environmental, controlled, and interventional human exposure studies, to highlight positive associations between WFS inhalation and cardiovascular morbidity and mortality. Motivated by these findings, we discuss preventative measures and suggest interventions to mitigate the cardiovascular impact of wildfires. We then review animal and cell exposure studies to call attention on the pathophysiological processes that support the deterioration of cardiovascular tissues and organs in response to WFS inhalation. Acknowledging the challenges of integrating evidence across independent sources, we contextualize laboratory-scale exposure approaches according to the biological processes that they model and offer suggestions for ensuring relevance to the human condition. Noting that wildfires are significant contributors to ambient air pollution, we compare the biological responses triggered by WFS to those of other harmful pollutants. We also review evidence for how WFS inhalation may trigger mechanisms that have been proposed as mediators of adverse cardiovascular effects upon exposure to air pollution. We finally conclude by highlighting research areas that demand further consideration. Overall, we aspire for this work to serve as a catalyst for regulatory initiatives to mitigate the adverse cardiovascular effects of WFS inhalation in the community and alleviate the occupational risk in wildland firefighters.
Collapse
Affiliation(s)
| | | | | | | | - Jessica M. Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
2
|
Ahmed S, Chowdhury MAH, Kader SB, Shahriar MH, Begum BA, Eunus M, Sarwar G, Islam T, Alam DS, Parvez F, Raqib R, Ahsan H, Yunus M. Personal exposure to household air pollution and lung function in rural Bangladesh: A population-based cross-sectional study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:385-397. [PMID: 36436222 PMCID: PMC10220216 DOI: 10.1080/09603123.2022.2150150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/16/2022] [Indexed: 05/29/2023]
Abstract
We assessed whether personal exposure to household air pollution [PM2.5 and black carbon (BC)] is associated with lung functions (FEV1, FVC, and their ratio) in non-smoking adults in rural Bangladesh. We measured personal exposure to PM2.5 using gravimetric analysis of PM2.5 mass and BC by reflectance measurement between April 2016 and June 2019. The average 24-hour PM2.5 and BC concentration was 141.0μgm-3 and 13.8μgm-3 for females, and 91.7 μgm-3 and 10.1 μgm-3 for males, respectively. A 1 μgm-3 increase in PM2.5 resulted in a 0.02 ml reduction in FEV1, 0.43 ml reduction in FVC, and 0.004% reduction in FEV1/FVC. We also found a similar inverse relationship between BC and lung functions (9.6 ml decrease in FEV1 and 18.5 ml decrease in FVC per 1μgm-3 increase in BC). A higher proportion of non-smoking biomass fuel users (50.1% of the females and 46.7% of the males) had restrictive patterns of lung function abnormalities, which need further exploration.
Collapse
Affiliation(s)
- Shyfuddin Ahmed
- icddr,b, Dhaka, Bangladesh
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Muhammad Ashique Haider Chowdhury
- icddr,b, Dhaka, Bangladesh
- Department of Public Health Sciences, Biological Science Division, The University of Chicago, Chicago, Illinois, USA
| | | | - Mohammad Hasan Shahriar
- Department of Public Health Sciences, Biological Science Division, The University of Chicago, Chicago, Illinois, USA
- UChicago Research, Bangladesh
| | | | | | | | | | - Dewan S Alam
- School of Kinesiology and Health Science, Faculty of Health, York University, Canada
| | - Faruque Parvez
- Mailman School of Public Health, Columbia University, New York, USA
| | | | - Habibul Ahsan
- Department of Public Health Sciences, Biological Science Division, The University of Chicago, Chicago, Illinois, USA
- UChicago Research, Bangladesh
- Mailman School of Public Health, Columbia University, New York, USA
- Institute for Population and Precision Health, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
3
|
Nicolaou L, Underhill L, Hossen S, Simkovich S, Thangavel G, Rosa G, McCracken JP, Davila-Roman V, de las Fuentes L, Quinn AK, Clark M, Diaz A, Pillarisetti A, Steenland K, Waller LA, Jabbarzadeh S, Peel JL, Checkley W. Cross-sectional analysis of the association between personal exposure to household air pollution and blood pressure in adult women: Evidence from the multi-country Household Air Pollution Intervention Network (HAPIN) trial. ENVIRONMENTAL RESEARCH 2022; 214:114121. [PMID: 36029836 PMCID: PMC9492861 DOI: 10.1016/j.envres.2022.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/20/2022] [Accepted: 08/13/2022] [Indexed: 06/18/2023]
Abstract
Elevated blood pressure (BP) is a leading risk factor for the global burden of disease. Household air pollution (HAP), resulting from the burning of biomass fuels, may be an important cause of elevated BP in resource-poor communities. We examined the exposure-response relationship of personal exposures to HAP -fine particulate matter (PM2.5), carbon monoxide (CO), and black carbon (BC) - with BP measures in women aged 40-79 years across four resource-poor settings in Guatemala, Peru, India and Rwanda. BP was obtained within a day of 24-h personal exposure measurements at baseline, when participants were using biomass for cooking. We used generalized additive models to characterize the shape of the association between BP and HAP, accounting for the interaction of personal exposures and age and adjusting for a priori identified confounders. A total of 418 women (mean age 52.2 ± 7.9 years) were included in this analysis. The interquartile range of exposures to PM2.5 was 42.9-139.5 μg/m3, BC was 6.4-16.1 μg/m3, and CO was 0.5-2.9 ppm. Both SBP and PP were positively associated with PM2.5 exposure in older aged women, achieving statistical significance around 60 years of age. The exact threshold varied by BP measure and PM2.5 exposures being compared. For example, SBP of women aged 65 years was on average 10.8 mm Hg (95% CI 1.0-20.6) higher at 232 μg/m3 of PM2.5 exposure (90th percentile) when compared to that of women of the same age with personal exposures of 10 μg/m3. PP in women aged 65 years was higher for exposures ≥90 μg/m3, with mean differences of 6.1 mm Hg (95% CI 1.8-10.5) and 9.2 mm Hg (95% CI 3.3-15.1) at 139 (75th percentile) and 232 μg/m3 (90th percentile) respectively, when compared to that of women of the same age with PM2.5 exposures of 10 μg/m3. Our findings suggest that reducing HAP exposures may help to reduce BP, particularly among older women.
Collapse
Affiliation(s)
- Laura Nicolaou
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA; Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, USA
| | - Lindsay Underhill
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA; Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, USA
| | - Shakir Hossen
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA; Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, USA
| | - Suzanne Simkovich
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA; Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, USA; Division of Healthcare Delivery Research, MedStar Health Research Institute, Hyattsville, USA; Division of Pulmonary and Critical Care Medicine, Georgetown University School of Medicine, Washington, USA
| | - Gurusamy Thangavel
- Sri Ramachandra Institute for Higher Education and Research, Chennai, India
| | - Ghislaine Rosa
- Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, London, UK
| | - John P McCracken
- Center for Health Studies, Universidad Del Valle de Guatemala, Guatemala City, Guatemala; Global Health Institute, Epidemiology and Biostatistics Department, University of Georgia, Athens, GA, USA
| | | | | | - Ashlinn K Quinn
- Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Maggie Clark
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Anaite Diaz
- Center for Health Studies, Universidad Del Valle de Guatemala, Guatemala City, Guatemala
| | - Ajay Pillarisetti
- Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Kyle Steenland
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lance A Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Shirin Jabbarzadeh
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jennifer L Peel
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA; Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, USA; Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA.
| |
Collapse
|
4
|
Ye W, Thangavel G, Pillarisetti A, Steenland K, Peel JL, Balakrishnan K, Jabbarzadeh S, Checkley W, Clasen T. Association between personal exposure to household air pollution and gestational blood pressure among women using solid cooking fuels in rural Tamil Nadu, India. ENVIRONMENTAL RESEARCH 2022; 208:112756. [PMID: 35065931 PMCID: PMC8935388 DOI: 10.1016/j.envres.2022.112756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND The Household Air Pollution Intervention Network (HAPIN) trial is an ongoing multi-center randomized controlled trial assessing the impact of a liquified petroleum gas (LPG) cookstove and fuel intervention on health. Given the potential impacts of household air pollution (HAP) exposure from burning solid fuels on cardiovascular health during pregnancy, we sought to determine whether baseline exposures to particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5), black carbon (BC) and carbon monoxide (CO) were associated with blood pressure among 799 pregnant women in Tamil Nadu, India, one of the HAPIN trial centers. METHODS Multivariable linear regression models were used to examine the association between 24-h personal exposure to PM2.5/BC/CO and systolic and diastolic blood pressure, controlling for maternal age, body mass index (BMI), mother's education, household wealth, gestational age, and season. At the time of measurement, women were between 9- and 20-weeks of gestation. RESULTS We found that systolic blood pressure (SBP) and diastolic blood pressure (DBP) were higher in pregnant women exposed to higher levels of HAP, though only the result for CO and DBP reached conventional statistical significance (p < 0.05). We observed a positive association between CO and DBP among the entire study cohort: a 1-log μg/m3 increase in CO exposure was associated with 0.36 mmHg higher DBP (95% confidence interval [CI]: 0.02 to 0.70). The effect was stronger in pregnant women with higher CO exposures (in the 3rd [≥ 0.9 and < 2.1 ppm] and 4th quartiles [≥ 2.1 and ≤ 46.9 ppm]). We also found that pregnant women with PM2.5 exposures in the highest quartile (≥ 129.9 and ≤ 2100 μg/m3) had a borderline significant association (p = 0.054) with DBP compared to those who had PM2.5 exposures in the lowest quartile (≥ 9.4 and < 47.7 μg/m3). No evidence of association was observed for BC exposure and blood pressure. CONCLUSION This study contributes to limited evidence regarding the relationship between HAP exposure and blood pressure among women during pregnancy, a critical window for both mother and child's life-course health. Results from this cross-sectional study suggest that exposures to PM2.5 and CO from solid fuel use are associated with higher blood pressure in pregnant women during their first or second trimester.
Collapse
Affiliation(s)
- Wenlu Ye
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Gurusamy Thangavel
- Department of Environmental Health Engineering, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Ajay Pillarisetti
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jennifer L Peel
- Dept of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Shirin Jabbarzadeh
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas Clasen
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Fandiño-Del-Rio M, Kephart JL, Williams KN, Shade T, Adekunle T, Steenland K, Naeher LP, Moulton LH, Gonzales GF, Chiang M, Hossen S, Chartier RT, Koehler K, Checkley W. Household Air Pollution Concentrations after Liquefied Petroleum Gas Interventions in Rural Peru: Findings from a One-Year Randomized Controlled Trial Followed by a One-Year Pragmatic Crossover Trial. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:57007. [PMID: 35549716 PMCID: PMC9097958 DOI: 10.1289/ehp10054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Household air pollution (HAP) from biomass fuel combustion remains a leading environmental risk factor for morbidity worldwide. OBJECTIVE Measure the effect of liquefied petroleum gas (LPG) interventions on HAP exposures in Puno, Peru. METHODS We conducted a 1-y randomized controlled trial followed by a 1-y pragmatic crossover trial in 180 women age 25-64 y. During the first year, intervention participants received a free LPG stove, continuous fuel delivery, and regular behavioral messaging, whereas controls continued their biomass cooking practices. During the second year, control participants received a free LPG stove, regular behavioral messaging, and vouchers to obtain LPG tanks from a nearby distributor, whereas fuel distribution stopped for intervention participants. We collected 48-h kitchen area concentrations and personal exposures to fine particulate matter (PM) with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ), black carbon (BC), and carbon monoxide (CO) at baseline and 3-, 6-, 12-, 18-, and 24-months post randomization. RESULTS Baseline mean [ ± standard deviation ( SD ) ] PM 2.5 (kitchen area concentrations 1,220 ± 1,010 vs. 1,190 ± 880 μ g / m 3 ; personal exposure 126 ± 214 vs. 104 ± 100 μ g / m 3 ), CO (kitchen 53 ± 49 vs. 50 ± 41 ppm ; personal 7 ± 8 vs. 7 ± 8 ppm ), and BC (kitchen 180 ± 120 vs. 210 ± 150 μ g / m 3 ; personal 19 ± 16 vs. 21 ± 22 μ g / m 3 ) were similar between control and intervention participants. Intervention participants had consistently lower mean ( ± SD ) concentrations at the 12-month visit for kitchen (41 ± 59 μ g / m 3 , 3 ± 6 μ g / m 3 , and 8 ± 13 ppm ) and personal exposures (26 ± 34 μ g / m 3 , 2 ± 3 μ g / m 3 , and 3 ± 4 ppm ) to PM 2.5 , BC, and CO when compared to controls during the first year. In the second year, we observed comparable HAP reductions among controls after the voucher-based intervention for LPG fuel was implemented (24-month visit PM 2.5 , BC, and CO kitchen mean concentrations of 34 ± 74 μ g / m 3 , 3 ± 5 μ g / m 3 , and 6 ± 6 ppm and personal exposures of 17 ± 15 μ g / m 3 , 2 ± 2 μ g / m 3 , and 3 ± 4 ppm , respectively), and average reductions were present among intervention participants even after free fuel distribution stopped (24-month visit PM 2.5 , BC, and CO kitchen mean concentrations of 561 ± 1,251 μ g / m 3 , 82 ± 124 μ g / m 3 , and 23 ± 28 ppm and personal exposures of 35 ± 38 μ g / m 3 , 6 ± 6 μ g / m 3 , and 4 ± 5 ppm , respectively). DISCUSSION Both home delivery and voucher-based provision of free LPG over a 1-y period, in combination with provision of a free LPG stove and longitudinal behavioral messaging, reduced HAP to levels below 24-h World Health Organization air quality guidelines. Moreover, the effects of the intervention on HAP persisted for a year after fuel delivery stopped. Such strategies could be applied in LPG programs to reduce HAP and potentially improve health. https://doi.org/10.1289/EHP10054.
Collapse
Affiliation(s)
- Magdalena Fandiño-Del-Rio
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, Maryland, USA
| | - Josiah L. Kephart
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kendra N. Williams
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Timothy Shade
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, Maryland, USA
| | - Temi Adekunle
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kyle Steenland
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Luke P. Naeher
- Environmental Health Science Department, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Lawrence H. Moulton
- Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gustavo F. Gonzales
- Laboratories of Investigation and Development, Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Perú
- High Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Marilu Chiang
- Biomedical Research Unit, Asociación Benéfica PRISMA, Lima, Perú
| | - Shakir Hossen
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Kirsten Koehler
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - William Checkley
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cardiopulmonary outcomes and Household Air Pollution (CHAP) Trial Investigators
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Environmental Health Science Department, College of Public Health, University of Georgia, Athens, Georgia, USA
- Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Laboratories of Investigation and Development, Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Perú
- High Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Perú
- Biomedical Research Unit, Asociación Benéfica PRISMA, Lima, Perú
- RTI International, Durham, North Carolina, USA
| |
Collapse
|
6
|
Kanagasabai T, Xie W, Yan L, Zhao L, Carter E, Guo D, Daskalopoulou SS, Chan Q, Elliott P, Ezzati M, Yang X, Xie G, Kelly F, Wu Y, Baumgartner J. Household Air Pollution and Blood Pressure, Vascular Damage, and Subclinical Indicators of Cardiovascular Disease in Older Chinese Adults. Am J Hypertens 2022; 35:121-131. [PMID: 34505873 PMCID: PMC8807175 DOI: 10.1093/ajh/hpab141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/09/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Limited data suggest that household air pollution from cooking and heating with solid fuel (i.e., coal and biomass) stoves may contribute to the development of hypertension and vascular damage. METHODS Using mixed-effects regression models, we investigated the associations of household air pollution with blood pressure (BP) and vascular function in 753 adults (ages 40-79 years) from 3 diverse provinces in China. We conducted repeated measures of participants' household fuel use, personal exposure to fine particulate air pollution (PM2.5), BP, brachial-femoral pulse wave velocity (bfPWV), and augmentation index. Ultrasound images of the carotid arteries were obtained to assess intima-media thickness (CIMT) and plaques. Covariate information on sociodemographics, health behaviors, 24-h urinary sodium, and blood lipids was also obtained. RESULTS Average estimated yearly personal exposure to PM2.5 was 97.5 µg/m3 (SD: 79.2; range: 3.5-1241), and 65% of participants cooked with solid fuel. In multivariable models, current solid fuel use was associated with higher systolic (2.4 mm Hg, 95% CI: -0.4, 4.9) and diastolic BP (1.4 mm Hg, 95% CI: -0.1, 3.0) and greater total area of plaques (1.7 mm2, 95% CI: -6.5, 9.8) compared with exclusive use of electricity or gas stoves. A 1 - ln(µg/m3) increase in PM2.5 exposure was associated with higher systolic (1.5 mm Hg, 95% CI: 0.2, 2.7) and diastolic BP (1.0 mm Hg, 95% CI: 0.4, 1.7) and with greater CIMT (0.02 mm, 95% CI: 0.00, 0.04) and total area of plaques (4.7 mm2, 95% CI: -2.0, 11.5). We did not find associations with arterial stiffness, except for a lower bfPWV (-1.5 m/s, 95% CI: -3.0, -0.0) among users of solid fuel heaters. CONCLUSIONS These findings add to limited evidence that household air pollution is associated with higher BP and with greater CIMT and total plaque area.
Collapse
Affiliation(s)
- Thirumagal Kanagasabai
- Institute for Health and Social Policy, and Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Wuxiang Xie
- Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, China
| | - Li Yan
- Department of Epidemiology and Biostatistics, and MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Liancheng Zhao
- Fu Wai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Ellison Carter
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Dongshuang Guo
- Department of Cardiology,Yuxian Hospital, Yuxian, Shanxi, China
| | - Stella S Daskalopoulou
- Department of Medicine, Division of Internal Medicine and Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, and MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, and MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Majid Ezzati
- Department of Epidemiology and Biostatistics, and MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Gaoqiang Xie
- Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, China
| | - Frank Kelly
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Yangfeng Wu
- Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, China
| | - Jill Baumgartner
- Institute for Health and Social Policy, and Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Kumar N, Phillip E, Cooper H, Davis M, Langevin J, Clifford M, Stanistreet D. Do improved biomass cookstove interventions improve indoor air quality and blood pressure? A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117997. [PMID: 34450490 DOI: 10.1016/j.envpol.2021.117997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES This systematic review and meta-analysis evaluates the most recent evidence to examine whether use of improved biomass cookstoves in households in low-middle income countries results in reduction in mean concentrations of carbon monoxide (CO) and particulate matter of size 2.5 μm (PM2.5) in the cooking area, as well as reduction in mean systolic (SBP) and diastolic blood pressure (DBP) of adults using the cookstoves when compared to adults who use traditional three stone fire or traditional biomass cookstoves. METHODS We searched databases of scientific and grey literature. We included studies if published between January 2012 and June 2021, reported impact of ICS interventions in non-pregnant adults in low/middle-income countries, and reported post-intervention results along with baseline of traditional cookstoves. Outcomes included 24- or 48-h averages of kitchen area PM2.5, CO, mean SBP and DBP. Meta-analyses estimated weighted mean differences between baseline and post-intervention values for all outcome measures. RESULTS Eleven studies were included; ten contributed estimates for HAP and four for BP. Interventions lead to significant reductions in PM2.5 (-0.73 mg/m3, 95% CI: -1.33, -0.13), CO (-8.37 ppm, 95%CI: -13.20, -3.54) and SBP (-2.82 mmHg, 95% CI: -5.53, -0.11); and a non-significant reduction in DBP (-0.80 mmHg, 95%CI: -2.33, 0.73), when compared to baseline of traditional cookstoves. Except for DBP, greatest reductions in all outcomes came from standard combustion ICS with a chimney, compared to ICS without a chimney and advanced combustion ICS. CONCLUSION Among the reviewed biomass stove types, ICS with a chimney feature resulted in greatest reductions in HAP and BP.
Collapse
Affiliation(s)
- Nitya Kumar
- Department of Medicine, Royal College of Surgeons in Ireland - Bahrain, Manama, Bahrain.
| | - Eunice Phillip
- Department of Public Health and Epidemiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Helen Cooper
- Department of Medicine, Royal College of Surgeons in Ireland - Bahrain, Manama, Bahrain
| | - Megan Davis
- Department of Public Health and Epidemiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jessica Langevin
- Department of Public Health and Epidemiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mike Clifford
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Debbi Stanistreet
- Department of Public Health and Epidemiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
8
|
Conibear L, Reddington CL, Silver BJ, Knote C, Arnold SR, Spracklen DV. Regional Policies Targeting Residential Solid Fuel and Agricultural Emissions Can Improve Air Quality and Public Health in the Greater Bay Area and Across China. GEOHEALTH 2021; 5:e2020GH000341. [PMID: 33898905 PMCID: PMC8057822 DOI: 10.1029/2020gh000341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Air pollution exposure is a leading public health problem in China. The majority of the total air pollution disease burden is from fine particulate matter (PM2.5) exposure, with smaller contributions from ozone (O3) exposure. Recent emission reductions have reduced PM2.5 exposure. However, levels of exposure and the associated risk remain high, some pollutant emissions have increased, and some sectors lack effective emission control measures. We quantified the potential impacts of relevant policy scenarios on ambient air quality and public health across China. We show that PM2.5 exposure inside the Greater Bay Area (GBA) is strongly controlled by emissions outside the GBA. We find that reductions in residential solid fuel use and agricultural fertilizer emissions result in the greatest reductions in PM2.5 exposure and the largest health benefits. A 50% transition from residential solid fuel use to liquefied petroleum gas outside the GBA reduced PM2.5 exposure by 15% in China and 3% within the GBA, and avoided 191,400 premature deaths each year across China. Reducing agricultural fertilizer emissions of ammonia by 30% outside the GBA reduced PM2.5 exposure by 4% in China and 3% in the GBA, avoiding 56,500 annual premature deaths across China. Our simulations suggest that reducing residential solid fuel or industrial emissions will reduce both PM2.5 and O3 exposure, whereas other policies may increase O3 exposure. Improving particulate air quality inside the GBA will require consideration of residential solid fuel and agricultural sectors, which currently lack targeted policies, and regional cooperation both inside and outside the GBA.
Collapse
Affiliation(s)
- Luke Conibear
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Carly L. Reddington
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Ben J. Silver
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | | | - Stephen R. Arnold
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Dominick V. Spracklen
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| |
Collapse
|
9
|
Loo RL, Lu Q, Carter EM, Liu S, Clark S, Wang Y, Baumgartner J, Tang H, Chan Q. A feasibility study of metabolic phenotyping of dried blood spot specimens in rural Chinese women exposed to household air pollution. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:328-344. [PMID: 32709935 DOI: 10.1038/s41370-020-0252-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Exposure-response studies and policy evaluations of household air pollution (HAP) are limited by current methods of exposure assessment which are expensive and burdensome to participants. METHODS We collected 152 dried blood spot (DBS) specimens during the heating and non-heating seasons from 53 women who regularly used biomass-burning stoves for cooking and heating. Participants were enrolled in a longitudinal study in China. Untargeted metabolic phenotyping of DBS were generated using ultra-high performance liquid chromatography coupled with mass spectrometry to exemplify measurement precision and assessment for feasibility to detect exposure to HAP, evaluated by season (high pollution vs. low pollution) and measured personal exposure to fine particulate matter <2.5 μm diameters (PM2.5) and black carbon (BC) in the 48-h prior to collecting the DBS specimen. RESULTS Metabolites e.g., amino acids, acyl-carnitines, lyso-phosphorylcholines, sphinganine, and choline were detected in the DBS specimens. Our approach is capable of detecting the differences in personal exposure to HAP whilst showing high analytical reproducibility, coefficient of variance (CV) <15%, meeting the U.S. Food and Drug Administration criteria. CONCLUSIONS Our results provide a proof of principle that high-resolution metabolic phenotypic data can be generated using a simple DBS extraction method thus suitable for exposure studies in remote, low-resource settings where the collection of serum and plasma is logistically challenging or infeasible. The analytical run time (19 min/specimen) is similar to most global phenotyping methods and therefore suitable for large-scale application.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Centre for Computational and Systems Medicine, Institute of Health Futures, Murdoch University, Perth, WA, Australia
- Australian National Phenome Centre, Murdoch University, Perth, WA, Australia
| | - Qinwei Lu
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Ellison M Carter
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA
| | - Si Liu
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Sierra Clark
- Institute for Health and Social Policy and Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Singapore, Singapore
| | - Jill Baumgartner
- Institute for Health and Social Policy and Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China.
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan, China.
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- MRC Centre for Environment and Health, Imperial College London, London, UK.
| |
Collapse
|
10
|
Chen H, Samet JM, Bromberg PA, Tong H. Cardiovascular health impacts of wildfire smoke exposure. Part Fibre Toxicol 2021; 18:2. [PMID: 33413506 PMCID: PMC7791832 DOI: 10.1186/s12989-020-00394-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, wildland fires have occurred more frequently and with increased intensity in many fire-prone areas. In addition to the direct life and economic losses attributable to wildfires, the emitted smoke is a major contributor to ambient air pollution, leading to significant public health impacts. Wildfire smoke is a complex mixture of particulate matter (PM), gases such as carbon monoxide, nitrogen oxide, and volatile and semi-volatile organic compounds. PM from wildfire smoke has a high content of elemental carbon and organic carbon, with lesser amounts of metal compounds. Epidemiological studies have consistently found an association between exposure to wildfire smoke (typically monitored as the PM concentration) and increased respiratory morbidity and mortality. However, previous reviews of the health effects of wildfire smoke exposure have not established a conclusive link between wildfire smoke exposure and adverse cardiovascular effects. In this review, we systematically evaluate published epidemiological observations, controlled clinical exposure studies, and toxicological studies focusing on evidence of wildfire smoke exposure and cardiovascular effects, and identify knowledge gaps. Improving exposure assessment and identifying sensitive cardiovascular endpoints will serve to better understand the association between exposure to wildfire smoke and cardiovascular effects and the mechanisms involved. Similarly, filling the knowledge gaps identified in this review will better define adverse cardiovascular health effects of exposure to wildfire smoke, thus informing risk assessments and potentially leading to the development of targeted interventional strategies to mitigate the health impacts of wildfire smoke.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA.
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
11
|
Walker ES, Fedak KM, Good N, Balmes J, Brook RD, Clark ML, Cole-Hunter T, Dinenno F, Devlin RB, L'Orange C, Luckasen G, Mehaffy J, Shelton R, Wilson A, Volckens J, Peel JL. Acute differences in pulse wave velocity, augmentation index, and central pulse pressure following controlled exposures to cookstove air pollution in the Subclinical Tests of Volunteers Exposed to Smoke (SToVES) study. ENVIRONMENTAL RESEARCH 2020; 180:108831. [PMID: 31648072 PMCID: PMC6899199 DOI: 10.1016/j.envres.2019.108831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/24/2023]
Abstract
Household air pollution emitted from solid-fuel cookstoves used for domestic cooking is a leading risk factor for morbidity and premature mortality globally. There have been attempts to design and distribute lower emission cookstoves, yet it is unclear if they meaningfully improve health. Using a crossover design, we assessed differences in central aortic hemodynamics and arterial stiffness following controlled exposures to air pollution emitted from five different cookstove technologies compared to a filtered air control. Forty-eight young, healthy participants were assigned to six 2-h controlled treatments of pollution from five different cookstoves and a filtered air control. Each treatment had a target concentration for fine particulate matter: filtered air control = 0 μg/m3, liquefied petroleum gas = 10 μg/m3, gasifier = 35 μg/m3, fan rocket = 100 μg/m3, rocket elbow = 250 μg/m3, three stone fire = 500 μg/m3. Pulse wave velocity (PWV), central augmentation index (AIx), and central pulse pressure (CPP) were measured before and at three time points after each treatment (0, 3, and 24 h). Linear mixed models were used to assess differences in the outcomes for each cookstove treatment compared to control. PWV and CPP were marginally higher 24 h after all cookstove treatments compared to control. For example, PWV was 0.15 m/s higher (95% confidence interval: -0.02, 0.31) and CPP was 0.6 mmHg higher (95% confidence interval: -0.8, 2.1) 24 h after the three stone fire treatment compared to control. The magnitude of the differences compared to control was similar across all cookstove treatments. PWV and CPP had no consistent trends at the other post-treatment time points (0 and 3 h). No consistent trends were observed for AIx at any post-treatment time point. Our findings suggest higher levels of PWV and CPP within 24 h after 2-h controlled treatments of pollution from five different cookstove technologies. The similar magnitude of the differences following each cookstove treatment compared to control may indicate that acute exposures from even the cleanest cookstove technologies can adversely impact these subclinical markers of cardiovascular health, although differences were small and may not be clinically meaningful.
Collapse
Affiliation(s)
- Ethan S Walker
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Kristen M Fedak
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Nicholas Good
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - John Balmes
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Maggie L Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Tom Cole-Hunter
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Frank Dinenno
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.
| | - Robert B Devlin
- Environmental Public Health Division, United States Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Christian L'Orange
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
| | | | - John Mehaffy
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
| | - Rhiannon Shelton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA.
| | - John Volckens
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
12
|
Gilbey SE, Reid CM, Huxley RR, Soares MJ, Zhao Y, Rumchev K. Associations Between Sub-Clinical Markers of Cardiometabolic Risk and Exposure to Residential Indoor Air Pollutants in Healthy Adults in Perth, Western Australia: A Study Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193548. [PMID: 31546738 PMCID: PMC6801858 DOI: 10.3390/ijerph16193548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND A growing body of epidemiological and clinical evidence has implicated air pollution as an emerging risk factor for cardiometabolic disease. Whilst individuals spend up to two-thirds of daily time in their domestic residential environment, very few studies have been designed to objectively measure the sub-clinical markers of cardiometabolic risk with exposure to domestic indoor air pollutants. This cross-sectional study aims to investigate associations between the components of domestic indoor air quality and selected sub-clinical cardiometabolic risk factors in a cohort of healthy adults living in Perth, Western Australia. METHODS One hundred and eleven non-smoking adults (65% female) living in non-smoking households who were aged between 35-69 years were recruited for the project. Study subjects were invited to participate in all sections of the study, which included: Domestic indoor air monitoring along with the concurrent 24 h ambulatory monitoring of peripheral and central blood pressure and measures of central hemodynamic indices, standardized questionnaires on aspects relating to current health status and the domestic environment, a 24 h time-activity diary during the monitoring period, and clinic-based health assessment involving collection of blood and urine biomarkers for lipid and glucose profiles, as well as measures of renal function and an analysis of central pulse wave and pulse wave velocity. RESULTS This study provides a standardized approach to the study of sub-clinical cardiometabolic health effects that are related to the exposure to indoor air pollution. CONCLUSION The findings of this study may provide direction for future research that will further contribute to our understanding of the relationship that exists between indoor air pollution and sub-clinical markers of cardiometabolic risk.
Collapse
Affiliation(s)
- Suzanne E Gilbey
- School of Public Health, Curtin University, Perth, WA 6148, Australia.
| | - Christopher M Reid
- School of Public Health, Curtin University, Perth, WA 6148, Australia.
- School of Public Health and Preventative Medicine, Monash University, Melbourne, VIC 3800, Australia.
| | - Rachel R Huxley
- School of Public Health, Curtin University, Perth, WA 6148, Australia.
- College of Science, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Mario J Soares
- School of Public Health, Curtin University, Perth, WA 6148, Australia.
| | - Yun Zhao
- School of Public Health, Curtin University, Perth, WA 6148, Australia.
| | - Krassi Rumchev
- School of Public Health, Curtin University, Perth, WA 6148, Australia.
| |
Collapse
|