1
|
Hu X, Zhou J, Deng Z, Zhang WX. MIL-100-Fe self-assembled cellulose nanofibers sponge for Diclofenac cascade encapsulation. Carbohydr Polym 2025; 352:123182. [PMID: 39843044 DOI: 10.1016/j.carbpol.2024.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/24/2025]
Abstract
The conventional hydrothermal synthesis and inherent hysteresis behavior limited the application of MOFs owing to the low kinetic efficiency in dynamic molecular adsorption. Herein, we developed an in-situ nucleation strategy for the preparation of MIL-100-Fe and immobilized it with hierarchy porous scaffold of TEMPO oxidized cellulose nanofiber (TCNF) sponge in the absence of additional organic solvent during fabrication under ambient conditions. The newly recognized mechanisms of gradient molecular transfer were proposed to illustrate the comprehensive DCF adsorption process from solution to micropores of MIL-100-Fe at molecule level triggered by the stray capacitance, varied Laplace pressure, size exclusion and cellulosic labyrinth. Additionally, the superior biocompatibility and natural degradability (in 24 h) of MIL@TCNF sponge were demonstrated. The used material could be converted rapidly to zero-valent iron (ZVI) sponge via simple reduction process, achieving both dehalogenation of Diclofenac (DCF) and material regeneration. These findings uncover the propagable mechanisms of molecular-diffusion driven adsorption cascade and provide a novel fabrication strategy of 3-D environmental functional sponge with reusability and biodegradability for water pollution control.
Collapse
Affiliation(s)
- Xiaolei Hu
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jie Zhou
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
2
|
Ma Q, Huo P, Wang K, Yuan Y, Bai S, Zhao C, Li W. Preparation of Perovskite-Type LaMnO 3 and Its Catalytic Degradation of Formaldehyde in Wastewater. Molecules 2024; 29:3822. [PMID: 39202902 PMCID: PMC11357681 DOI: 10.3390/molecules29163822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Formaldehyde (HCHO) is identified as the most toxic chemical among 45 organic compounds found in industrial wastewater, posing significant harm to both the environment and human health. In this study, a novel approach utilizing the Lanthanum-manganese complex oxide (LaMnO3)/peroxymonosulfate (PMS) system was proposed for the effective removal of HCHO from wastewater. Perovskite-Type LaMnO3 was prepared by sol-gel method. The chemical compositions and morphology of LaMnO3 samples were analyzed through thermogravimetric analysis (TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The effects of LaMnO3 dosage, PMS concentration, HCHO concentration, and initial pH on the HCHO removal rate were investigated. When the concentration of HCHO is less than 1.086 mg/mL (5 mL), the dosage of LaMnO3 is 0.06 g, and n(PMS)/n(HCHO) = 2.5, the removal rate of HCHO is more than 96% in the range of pH = 5-13 at 25 °C for 10 min. Compared with single-component MnO2, the perovskite structure of LaMnO3 is beneficial to the catalytic degradation of HCHO by PMS. It is an efficient Fenton-like oxidation process for treating wastewater containing HCHO. The LaMnO3 promoted the formation of SO4•- and HO•, which sequentially oxidized HCHO to HCOOH and CO2.
Collapse
Affiliation(s)
- Qingguo Ma
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China; (P.H.); (K.W.); (Y.Y.); (S.B.); (C.Z.); (W.L.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Su H, Yan J, Yan X, Zhao Q, Liao C, Li N, Wang X. Highly sensitive standardized toxicity biosensors for rapid water quality warning. BIORESOURCE TECHNOLOGY 2024; 406:130985. [PMID: 38885731 DOI: 10.1016/j.biortech.2024.130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Microbial electrochemical sensor (MES) using electroactive biofilm (EAB) as the sensing element represents a broad-spectrum technology for early warning of biotoxicity of water samples. However, its commercial application is impeded by limited sensitivity and repeatability. Here, we proposed a layered standardized EAB (SEAB) with enriched Geobacter anodireducens SD-1 in the inner layer and self-matched outer layer. The SEAB sensors showed a 2.3 times higher sensitivity than conventional EAB acclimated directly from wastewater (WEAB). A highly repeatable response sensitivity was concentrated at 0.011 ± 0.0006 A/m2/ppm in 4 replicated batches of SEAB sensors (R2 > 0.95), highlighting their potential for reliable toxicity monitoring in practical applications. In contrast, the sensing performance of all WEAB sensors was unpredictable. SEAB also exhibited a better tolerance towards low concentration of formaldehyde, with only a 4 % loss in viability. Our findings improved the sensitivity and reproducibility of standardized MES for toxicity early warning.
Collapse
Affiliation(s)
- Huijuan Su
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jiaguo Yan
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin Marine Petroleum Environmental and Reservoir Low-Damage Drilling Fluid Enterprise Key Laboratory, China.
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
4
|
Guan Z, Yan J, Yan H, Li B, Guo L, Sun Q, Geng T, Guo X, Liu L, Yan W, Wang X. Enhanced Stability and Detection Range of Microbial Electrochemical Biotoxicity Sensor by Polydopamine Encapsulation. BIOSENSORS 2024; 14:365. [PMID: 39194594 DOI: 10.3390/bios14080365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
With the rapid development of modern industry, it is urgently needed to measure the biotoxicity of complex chemicals. Microbial electrochemical biotoxicity sensors are an attractive technology; however, their application is usually limited by their stability and reusability after measurements. Here, we improve their performance by encapsulating the electroactive biofilm with polydopamine (PDA), and we evaluate the improvement by different concentrations of heavy metal ions (Cu2+, Ag+, and Fe3+) in terms of inhibition ratio (IR) and durability. Results indicate that the PDA-encapsulated sensor exhibits a more significant detection concentration than the control group, with a 3-fold increase for Cu2+ and a 1.5-fold increase for Ag+. Moreover, it achieves 15 more continuous toxicity tests than the control group, maintaining high electrochemical activity even after continuous toxicity impacts. Images from a confocal laser scanning microscope reveal that the PDA encapsulation protects the activity of the electroactive biofilm. The study, thus, demonstrates that PDA encapsulation is efficacious in improving the performance of microbial electrochemical biotoxicity sensors, which can extend its application to more complex media.
Collapse
Affiliation(s)
- Zengfu Guan
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin 300450, China
- Tianjin Marine Petroleum Environmental and Reservoir Low-Damage Drilling Fluid Enterprise Key Laboratory, Tianjin 300450, China
| | - Jiaguo Yan
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin 300450, China
- Tianjin Marine Petroleum Environmental and Reservoir Low-Damage Drilling Fluid Enterprise Key Laboratory, Tianjin 300450, China
| | - Haiyuan Yan
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin 300450, China
- Tianjin Marine Petroleum Environmental and Reservoir Low-Damage Drilling Fluid Enterprise Key Laboratory, Tianjin 300450, China
| | - Bin Li
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin 300450, China
- Tianjin Marine Petroleum Environmental and Reservoir Low-Damage Drilling Fluid Enterprise Key Laboratory, Tianjin 300450, China
| | - Lei Guo
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin 300450, China
- Tianjin Marine Petroleum Environmental and Reservoir Low-Damage Drilling Fluid Enterprise Key Laboratory, Tianjin 300450, China
| | - Qiang Sun
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin 300450, China
- Tianjin Marine Petroleum Environmental and Reservoir Low-Damage Drilling Fluid Enterprise Key Laboratory, Tianjin 300450, China
| | - Tie Geng
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin 300450, China
- Tianjin Marine Petroleum Environmental and Reservoir Low-Damage Drilling Fluid Enterprise Key Laboratory, Tianjin 300450, China
| | - Xiaoxuan Guo
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin 300450, China
- Tianjin Marine Petroleum Environmental and Reservoir Low-Damage Drilling Fluid Enterprise Key Laboratory, Tianjin 300450, China
| | - Lidong Liu
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin 300450, China
- Tianjin Marine Petroleum Environmental and Reservoir Low-Damage Drilling Fluid Enterprise Key Laboratory, Tianjin 300450, China
| | - Wenqing Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan, Tianjin 300350, China
| |
Collapse
|
5
|
Fekete-Kertész I, Pous N, Feigl V, Márton R, Berkl Z, Ceballos-Escalera A, Balaguer MD, Puig S, Molnár M. Ecotoxicity characterization assisted performance assessment of electro-bioremediation reactors for nitrate and arsenite elimination. Biotechnol Bioeng 2024; 121:250-265. [PMID: 37881108 DOI: 10.1002/bit.28580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
The performance of combined reduction of nitrate (NO3 - ) to dinitrogen gas (N2 ) and oxidation of arsenite (As[III]) to arsenate (As[V]) by a bioelectrochemical system was assessed, supported by ecotoxicity characterization. For the comprehensive toxicity characterization of the untreated model groundwater and the treated reactor effluents, a problem-specific ecotoxicity test battery was established. The performance of the applied technology in terms of toxicity and target pollutant elimination was compared and analyzed. The highest toxicity attenuation was achieved under continuous flow mode with hydraulic retention time (HRT) = 7.5 h, with 95%, nitrate removal rate and complete oxidation of arsenite to arsenate. Daphnia magna proved to be the most sensitive test organism. The results of the D. magna lethality test supported the choice of the ideal operational conditions based on chemical data analysis. The outcomes of the study demonstrated that the applied technology was able to improve the groundwater quality in terms of both chemical and ecotoxicological characteristics. The importance of ecotoxicity evaluation was also highlighted, given that significant target contaminant elimination did not necessarily lower the environmental impact of the initial, untreated medium, in addition, anomalies might occur during the technology operational process which in some instances, could result in elevated toxicity levels.
Collapse
Affiliation(s)
- Ildikó Fekete-Kertész
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Narcís Pous
- LEQUiA, Institute of the Environment, University of Girona, Girona, Spain
| | - Viktória Feigl
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Rita Márton
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zsófia Berkl
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Maria D Balaguer
- LEQUiA, Institute of the Environment, University of Girona, Girona, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Girona, Spain
| | - Mónika Molnár
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
6
|
Yang FA, Hou YN, Cao C, Ren N, Wang AJ, Guo J, Liu Z, Huang C. Mechanistic insights into the response of electroactive biofilms to Cd 2+ shock: bacterial viability and electron transfer behavior at the cellular and community levels. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132183. [PMID: 37531766 DOI: 10.1016/j.jhazmat.2023.132183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Electroactive biofilms (EABs) play a crucial role in environmental bioremediation due to their excellent extracellular electron transfer (EET) capabilities. However, Cd2+ can have toxic effects on the electrochemical performance of EABs, and the comprehensive inhibition mechanism of EABs in response to Cd2+ shock remains elusive. This study indicated that Cd2+ shock significantly reduced biomass and increased oxidative stress in EABs at the cellular level. The bacterial viability of EABs in phase III under 0.5 mM Cd2+ shock (EABCd2+-III0.5) decreased by 16.31% compared to EABCK-III. Moreover, intracellular NADH, c-Cyts, and the abundance of electroactive species were essential indicators to evaluate EET behavior of EABs. In EABCd2+-III0.5, these indicators decreased by 26.32%, 33.40%, and 20.65%, respectively. Structural equation modeling analysis established quantitative correlations between core components and electrochemical activity at cellular and community levels. The correlation analysis revealed that the growth and electron transfer functions of EABs were predictive indicators for their electrochemical performance, with standardized path coefficients of 0.407 and 0.358, respectively. These findings enhance our understanding of EABs' response to Cd2+ shock and provide insights for improving their performance in heavy metal wastewater.
Collapse
Affiliation(s)
- Feng-Ai Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ce Cao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Nanqi Ren
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ai-Jie Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhihua Liu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
7
|
Feng H, Yang W, Zhang Y, Ding Y, Chen L, Kang Y, Huang H, Chen R. Electroactive microorganism-assisted remediation of groundwater contamination: Advances and challenges. BIORESOURCE TECHNOLOGY 2023; 377:128916. [PMID: 36940880 DOI: 10.1016/j.biortech.2023.128916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Groundwater contamination has become increasingly prominent, therefore, the development of efficient remediation technology is crucial for improving groundwater quality. Bioremediation is cost-effective and environmentally friendly, while coexisting pollutant stress can affect microbial processes, and the heterogeneous character of groundwater medium can induce bioavailability limitations and electron donor/acceptor imbalances. Electroactive microorganisms (EAMs) are advantageous in contaminated groundwater because of their unique bidirectional electron transfer mechanism, which allows them to use solid electrodes as electron donors/acceptors. However, the relatively low-conductivity groundwater environment is unfavorable for electron transfer, which becomes a bottleneck problem that limits the remediation efficiency of EAMs. Therefore, this study reviews the recent advances and challenges of EAMs applied in the groundwater environment with complex coexisting ions, heterogeneity, and low conductivity and proposes corresponding future directions.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Wanyue Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Ying Kang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Huan Huang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
8
|
Fu J, Liu N, Peng Y, Wang G, Wang X, Wang Q, Lv M, Chen L. An ultra-light sustainable sponge for elimination of microplastics and nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131685. [PMID: 37257263 DOI: 10.1016/j.jhazmat.2023.131685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
The currently established tools and materials for elimination of the emerging contaminants from environmental and food matrices, particularly micro- and nano-scale plastics, have been largely limited by complicated preparation/operation, high cost, and poor degradability. Here we show that, crosslinking naturally occurring corn starch and gelatin produces ultralight porous sponge upon freeze-drying that can be readily enzymatically decomposed to glucose; The sponge affords capture of micro- and nano-scale plastics into its pores by simple pressing in an efficiency up to 90% while preserving excellent mechanical strength. Heterogeneous diffusion was found to play a dominant role in the adsorption of microplastics by the starch-gelatin sponge. Investigations into the performance of the sponge in complex matrices including tap water, sea water, soil surfactant, and take-out dish soup, further reveal a considerably high removal efficiency (60%∼70%) for the microplastics in the real samples. It is also suggested tiny plastics in different sizes be removable using the sponge with controlled pore size. With combined merits of sustainability, cost-effectiveness, and simple operation without the need for professional background for this approach, industrial and even household removal of tiny plastic contaminants from environmental and food samples are within reach.
Collapse
Affiliation(s)
- Jianxin Fu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Nuan Liu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yunxi Peng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Xiaokun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qiaoning Wang
- CAS key laboratory of Coastal Environmental Process and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Min Lv
- CAS key laboratory of Coastal Environmental Process and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS key laboratory of Coastal Environmental Process and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
9
|
Liang F, Huang W, Wu L, Wu Y, Zhang T, He X, Wang Z, Yu X, Li Y, Qian S. A NIR fluorescent probe for dual imaging of mitochondrial viscosity and FA in living cells and zebrafish. Analyst 2023; 148:1437-1441. [PMID: 36919562 DOI: 10.1039/d2an01628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Formaldehyde (FA) and viscosity play multiple roles in human health and diseases, and viscosity has great regional differences due to the diversity of subcellular organelles. However, it is challenging to achieve dual detection of viscosity and FA in subcellular organelles. Herein, we developed a near infrared (NIR) fluorescent probe FA-Cy, which can simultaneously monitor the viscosity and FA concentration of mitochondria in living cells. The probe could detect mitochondrial viscosity and exogenous and endogenous FA in living cells and zebrafish.
Collapse
Affiliation(s)
- Feng Liang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Wanyun Huang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Lei Wu
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Yihong Wu
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu 610091, China
| | - Xiaolong He
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China. .,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, China
| | - Zhouyu Wang
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, China
| | - Xiaoqi Yu
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China. .,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu 610091, China
| | - Shan Qian
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China. .,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, China
| |
Collapse
|
10
|
Chu N, Jiang Y, Zhang L, Zeng RJ, Li D. Biocathode prepared at low anodic potentials achieved a higher response for water biotoxicity monitoring after polarity reversal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157553. [PMID: 35878860 DOI: 10.1016/j.scitotenv.2022.157553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Microbial electrochemical sensors equipped with biocathode sensing elements have attracted a growing interest, but their startup and recovery properties remain unclear. In this study, the approach of polarity reversal was applied for the biocathode sensing element fabrication and biosensor recovery. The stimulating/suppressing effect of formaldehyde was determined by the anode potential before polarity reversal as well as the increased trials of toxic exposure. Increasing anode potential from -0.3 V to +0.3 V before polarity reversal, the baseline electric signal was changed from -0.028 ± 0.001 mA to -0.005 ± 0.003 mA, while the maximum normalized electrical signal (NES) was increased from 1.1 ± 0.1 to 4.1 ± 1.9, and thus a general downtrend was observed for Response as a newly induced indicator. Polarity reversal failed to recover the electroactivity of these poisoned bioelectrodes. This study demonstrated that electrode potential was critical when using the approach of polarity reversal to construct the biocathode sensing element, and revealed an urgent need for strategies toward high recoverability of such biosensors.
Collapse
Affiliation(s)
- Na Chu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
11
|
Tan W, Chen Q, Wang R, Wang Z, Zhang H, Wu Y. Research on the on-line determination of formaldehyde gas by the gas-liquid phase chemiluminescence method. RSC Adv 2022; 12:23956-23962. [PMID: 36093228 PMCID: PMC9400167 DOI: 10.1039/d2ra03175b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Based on the gas-liquid phase chemiluminescence tester independently developed by our laboratory, a highly sensitive, fast and accurate on-line detection method of formaldehyde gas in ambient atmosphere is established. The chemiluminescence system and the trace formaldehyde gas in the air directly undergo an interface heterogeneous chemiluminescence reaction to obtain a strong chemiluminescence signal. Through the measurement of the chemiluminescence signal intensity, a highly sensitive, real-time and on-line method for the determination of formaldehyde in the air was established. Factors influencing the experimental results such as gallic acid, potassium dichromate, reaction medium concentration, surfactant type and concentration, pump speed, tube length, and interfering gas were discussed based on the single factor and orthogonal analysis results. Finally, the optimal detection conditions were collected, and the detection results were compared with the national standard phenol reagent method. The results show that when the concentration of the standard formaldehyde gas is in the range of 0-0.582 μg L-1, the linear equation of this method is y = 208x + 29.667, the linear coefficient is R 2 = 0.997, and the minimum detection concentration of formaldehyde is 2.327 × 10-3 μg L-1. Under the same external conditions, the comparison and analysis using the national standard phenol reagent method proved that this method has the advantages of fast detection speed, low detection limit, good sensitivity, and accurate results, which can be used for real-time and online determination of trace formaldehyde in ambient air.
Collapse
Affiliation(s)
- Wenyuan Tan
- College of Chemical Engineering, Sichuan University of Science and Engineering Zigong 643000 China
- Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities Zigong 643000 China
| | - Qi Chen
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering Zigong 643000 China
| | - Rong Wang
- College of Chemical Engineering, Sichuan University of Science and Engineering Zigong 643000 China
| | - Zhuqing Wang
- College of Chemical Engineering, Sichuan University of Science and Engineering Zigong 643000 China
| | - Huan Zhang
- College of Chemical Engineering, Sichuan University of Science and Engineering Zigong 643000 China
| | - Yuran Wu
- College of Chemical Engineering, Sichuan University of Science and Engineering Zigong 643000 China
| |
Collapse
|
12
|
Cao H, Sun J, Wang K, Zhu G, Li X, Lv Y, Wang Z, Feng Q, Feng J. Performance of bioelectrode based on different carbon materials in bioelectrochemical anaerobic digestion for methanation of maize straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154997. [PMID: 35381255 DOI: 10.1016/j.scitotenv.2022.154997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The performance of the bioelectrochemical anaerobic digestion (BEAD) reactor was investigated with different carbon material-modified electrodes for the methanation of maize straw. The carbon material-modified electrodes used titanium (Ti) mesh modified with carbon nanotube (CNT), carbon black (CB), and activated carbon (AC). The maximum cumulative methane production obtained in the Ti-CNT reactor was (616.4 ± 9.3) mL/g VS, while the maximum methane production rate in the Ti-AC reactor was (61.9 ± 1.0) mL/g VS.d.The electroactive bacteria were well enriched by the different electrodes, and the enriched electroactive bacteria further facilitate the direct interspecies electron transfer (DIET) for methane production. Additionally, we found the phylum Firmicutes showed a linear relationship to methanogenic performance, as well as the Genus Proteiniborus. The Ti-CNT electrode shows better performance by the electrochemical analysis. These findings provide critical knowledge for the large-scale use of the BEAD process and the treatment of maize straw.
Collapse
Affiliation(s)
- Hongrui Cao
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jin Sun
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Keqiang Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guanyu Zhu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoxiang Li
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yaowei Lv
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zejie Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qing Feng
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jie Feng
- School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| |
Collapse
|
13
|
Rafieenia R, Sulonen M, Mahmoud M, El-Gohary F, Rossa CA. Integration of microbial electrochemical systems and photocatalysis for sustainable treatment of organic recalcitrant wastewaters: Main mechanisms, recent advances, and present prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153923. [PMID: 35182645 DOI: 10.1016/j.scitotenv.2022.153923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
In recent years, microbial electrochemical systems (MESs) have demonstrated to be an environmentally friendly technology for wastewater treatment and simultaneous production of value-added products or energy. However, practical applications of MESs for the treatment of recalcitrant wastewater are limited by their low power output and slow rates of pollutant biodegradation. As a novel technology, hybrid MESs integrating biodegradation and photocatalysis have shown great potential to accelerate the degradation of bio-recalcitrant pollutants and increase the system output. In this review, we summarize recent advances of photo-assisted MESs for enhanced removal of recalcitrant pollutants, and present further discussion about the synergistic effect of biodegradation and photocatalysis. In addition, we analyse in detail different set-up configurations, discuss mechanisms of photo-enhanced extracellular electron transfer, and briefly present ongoing research cases. Finally, we highlight the current limitations and corresponding research gaps, and propose insights for future research.
Collapse
Affiliation(s)
- Razieh Rafieenia
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Mira Sulonen
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Mohamed Mahmoud
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo 12311, Egypt
| | - Fatma El-Gohary
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo 12311, Egypt
| | - Claudio Avignone Rossa
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
14
|
Noori A, Kim H, Kim MH, Kim K, Lee K, Oh HS. Quorum quenching bacteria isolated from industrial wastewater sludge to control membrane biofouling. BIORESOURCE TECHNOLOGY 2022; 352:127077. [PMID: 35378282 DOI: 10.1016/j.biortech.2022.127077] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
N-acylhomoserine lactone (AHL)-based bacterial communication through quorum sensing (QS) is one of the main causes of biofouling. Although quorum quenching (QQ) has proven to be an effective strategy against biofouling in membrane bioreactors (MBRs) for municipal wastewater treatment, its applicability for industrial wastewater treatment has rarely been studied. This is the first study to isolate QQ strains from the activated sludge used to treat industrial wastewater containing toxic tetramethylammonium hydroxide (TMAH) and 1-methyl-2-pyrrolidinone. The two QQ strains from genus Bacillus (SDC-U1 and SDC-A8) survived and effectively degraded QS signals in the presence of TMAH. They also showed resistance to toxic byproducts of TMAH degradation such as ammonium and formaldehyde. They effectively reduced the biofilm formation of Pseudomonas aeruginosa PAO1 and mixed community of activated sludge. The strains isolated in this study thus have the potential to be employed to reduce membrane biofouling in MBRs during the treatment of TMAH-containing wastewater.
Collapse
Affiliation(s)
- Abdolvahed Noori
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea
| | - Hyeok Kim
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea
| | - Myung Hee Kim
- Facility Team, Samsung Display Co. Ltd, Asan 31454, Chungcheongnam-do, Republic of Korea
| | - Keumyong Kim
- Facility Team, Samsung Display Co. Ltd, Asan 31454, Chungcheongnam-do, Republic of Korea
| | - Kibaek Lee
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
15
|
Chu N, Cai J, Li Z, Gao Y, Liang Q, Hao W, Liu P, Jiang Y, Zeng RJ. Indicators of water biotoxicity obtained from turn-off microbial electrochemical sensors. CHEMOSPHERE 2022; 286:131725. [PMID: 34352539 DOI: 10.1016/j.chemosphere.2021.131725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The development of biosensors is critical to reducing potential risks associated with contamination accidents. However, the application of microbial electrochemical sensors for water biotoxicity monitoring is hampered by the lack of an indicator with high response magnitudes. In this study, microbial electrochemical sensors were fabricated with interdigitated electrode arrays (IDAs), and indicators from various electrochemical analyses were comprehensively investigated. Only the peak of cyclic voltammetry (CV) was highly linearly correlated with the commonly used current indicator during the enrichment of the electroactive biofilm. The resistance fitted from the electrochemical impedance spectroscopy (EIS) data provided a comparable and even higher inhibition ratio (IR) than the current during toxicity assessments. The differential pulse voltammetry (DPV) did not exhibit a higher sensitivity than the CV peak. However, no clear response was observed in the real-time impedance analysis for use in water biotoxicity monitoring. Most of the microbes were in the propidium iodide (PI)-permeable state after the toxicity assessments, although the current was fully recovered. This study demonstrates the potential to use EIS data as indicators of water biotoxicity using microbial electrochemical sensors.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiayi Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhigang Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yu Gao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
16
|
Xing F, Xi H, Yu Y, Zhou Y. Anode biofilm influence on the toxic response of microbial fuel cells under different operating conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145048. [PMID: 33631591 DOI: 10.1016/j.scitotenv.2021.145048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The response of microorganisms in microbial fuel cells (MFCs) to toxic compounds under different operating conditions, such as flow rate and culture time, was investigated herein. While it has been reported that MFCs can detect some toxic substances, it is unclear if operating conditions affect MFCs toxicity response. In this study, the toxic response time of MFCs decreased when the flow rate increased from 0.5 mL/min to 2 mL/min and then increased with 5 mL/min. The inhibition rates at 0.5 mL/min, 2 mL/min, and 5 mL/min were 8.4% ± 1.6%, 45.1% ± 5.3%, and 4.9% ± 0.3%, respectively. With the increase of culture time from 7 days to 90 days, the toxic response time of MFCs gradually increased. The inhibition rates at culture times of 7 days, 45 days, and 90 days were 45.1% ± 5.3%, 32.6% ± 6.6%, and 23.2% ± 1.3%, respectively. Increasing the culture time will reduce the sensitivity of MFC. The results showed that MFCs can respond quickly at a flow rate of 2 mL/min after cultivation for 7 days. Under these conditions, the power density can reach 1137.0 ± 65.5 mW/m2, the relative content of Geobacter sp. is 57%, and the ORP of the multilayers changed from -159.2 ± 1.6 mV to -269.9 ± 1.7 mV within 200 μm biofilm thickness. These findings show that increasing the flow rate and shortening the culture time are conducive for the toxicity response of MFCs, which will increase the sensitivity of MFCs in practical applications.
Collapse
Affiliation(s)
- Fei Xing
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Hongbo Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
17
|
Li T, Liao C, An J, Zhou L, Tian L, Zhou Q, Li N, Wang X. A highly sensitive bioelectrochemical toxicity sensor and its evaluation using immediate current attenuation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142646. [PMID: 33066964 DOI: 10.1016/j.scitotenv.2020.142646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Electroactive biofilm (EAB) sensor had shown great potential in the field of early warning of toxicants in water because of the low-cost and broad-spectrum. However, the traditional calculation of sensitivity strongly relied on the time and concentration gradient which weakened time-efficiency of the sensor. Moreover, the sensitivity could be further improved to respond trace concentrations. Here EAB sensors with different substrate concentrations were formed to respond different concentrations formaldehyde ranging from 1 ppm to 50 ppm and immediate current attenuation (ICA) was induced to evaluate the sensitivity. The ICA (~70 s) exhibited a shorter time than that calculated by calculable sensitivity (CS) and current attenuation (CA), which not only achieved the response of trace concentration but also improved the time-efficiency of the sensor. The EAB formed with 0.1 g/L acetate (EAB-0.1) had a 380% higher sensitivity than that formed with 1.0 g/L acetate (EAB-1.0), leading to a significant electrochemical toxicity response to 1 ppm of formaldehyde. The results of electrochemical response coefficient confirmed that EAB-0.1 was 1.5-6.3 times of that formed with acetate from 0.2 to 1.0 g/L, which was related with microbial community and component of EAB as described in our previous study. Our findings demonstrated that calculation of sensitivity could be optimized to reflect time-efficiency and EAB with limit acetate could be applied in trace toxicant detection.
Collapse
Affiliation(s)
- Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jingkun An
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lean Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
18
|
Qi X, Wang S, Li T, Wang X, Jiang Y, Zhou Y, Zhou X, Huang X, Liang P. An electroactive biofilm-based biosensor for water safety: Pollutants detection and early-warning. Biosens Bioelectron 2020; 173:112822. [PMID: 33221512 DOI: 10.1016/j.bios.2020.112822] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/24/2023]
Abstract
Besides serving in wastewater treatment and energy generation fields, electroactive biofilm (EAB) has been employed as a sensitive bio-elements in a biosensor to monitor water quality by delivering electrical signals without additional mediators. Increasing studies have applied EAB-based biosensor in specific pollutant detection, typically biochemical oxygen demand (BOD) detection, as well as in early-warning of composite pollutants. Based on a comprehensive review of literatures, this study reveals how EAB outputs electrical signal, how we can evaluate and improve this performance, and what information we can expect from EAB-based biosensor. Since BOD detection and early-warning are normally confusing, this study manages to differentiate these two applications through distinguished purposes and metrics. Based on the introductions of progresses and applications of EAB-based biosensors so far, several novel strategies toward the future development of EAB-based biosensors are proposed.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Shuyi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
19
|
Feng Q, Song YC, Li J, Wang Z, Wu Q. Influence of electrostatic field and conductive material on the direct interspecies electron transfer for methane production. ENVIRONMENTAL RESEARCH 2020; 188:109867. [PMID: 32846649 DOI: 10.1016/j.envres.2020.109867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
The influence of electrostatic field on the direct interspecies electron transfer (DIET) pathways for methane production was investigated in a batch bioelectrochemical anaerobic digester (BEAD). The ultimate methane production and methane yield in the BEAD reactor saturated to 925 ± 29 mL/L and 309.9 ± 9.6 mL CH4/g COD, respectively, which were much higher than 616 ± 3 mL/L and 205.4 ± 205.4 mL CH4/g COD in the anaerobic digester (AD). In the cyclic voltammogram (CV) for bulk solution, the oxidation peak current was 0.52 mA in the BEAD reactor, which was higher than 0.24 mA of AD reactor. This shows that the oxidizing ability of microorganisms was greatly improved in the BEAD reactor. Anaerolineaceae, a well-known electroactive bacterial family, was well enriched in the BEAD reactor. It indicates that the electrostatic field can enrich the electroactive bacteria and activate the DIET pathways for methane production. Moreover, the conductive material (activated carbon) further improved the performance of BEAD reactor, implies that the conductivities of bulk solution is one of the important parameters for the DIET pathways.
Collapse
Affiliation(s)
- Qing Feng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Jun Li
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400030, China
| | - Zejie Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qin Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|