1
|
Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: recent advances and emerging technologies. Bioprocess Biosyst Eng 2023; 46:393-428. [PMID: 35943595 DOI: 10.1007/s00449-022-02763-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Petroleum hydrocarbons and toxic metals are sources of environmental contamination and are harmful to all ecosystems. Fungi have metabolic and morphological plasticity that turn them into potential prototypes for technological development in biological remediation of these contaminants due to their ability to interact with a specific contaminant and/or produced metabolites. Although fungal bioinoculants producing enzymes, biosurfactants, polymers, pigments and organic acids have potential to be protagonists in mycoremediation of hydrocarbons and toxic metals, they can still be only adjuvants together with bacteria, microalgae, plants or animals in such processes. However, the sudden accelerated development of emerging technologies related to the use of potential fungal bioproducts such as bioinoculants, enzymes and biosurfactants in the remediation of these contaminants, has boosted fungal bioprocesses to achieve higher performance and possible real application. In this review, we explore scientific and technological advances in bioprocesses related to the production and/or application of these potential fungal bioproducts when used in remediation of hydrocarbons and toxic metals from an integral perspective of biotechnological process development. In turn, it sheds light to overcome existing technological limitations or enable new experimental designs in the remediation of these and other emerging contaminants.
Collapse
|
2
|
Xu Y, Li H, Zhang X, Bai X, Wu L, Tan C, Zhang Z. Removal, migration, and distribution of naphthalene in bioretention facilities: the influences of particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46940-46949. [PMID: 36735139 DOI: 10.1007/s11356-023-25330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023]
Abstract
Particulate matter (PM), as an important carrier of carrying and transporting runoff pollutants, can significantly affect the behavior and removal efficiency of pollutants in bioretention facilities. In order to control the pollution caused by naphthalene in bioretention facilities, the removal efficiency and migration characteristics of naphthalene were systematically investigated under the influences of PM. The results showed that the removal efficiency of naphthalene was 74 ~ 97% in bioretention facilities under the influences of PM. With the higher concentration, the lower rainfall return period, and the longer antecedent drying period, the removal efficiency of naphthalene in each medium layer were higher. Furthermore, the PM could increase the naphthalene adsorption capacity onto medium in the first 10 cm depth, which showed more than 80% removal efficiency and lower mobility of naphthalene. The removal efficiency of naphthalene was significantly higher (90 ~ 97%), when the particle size and concentration of PM were 0 ~ 45 μm and 500 mg/L, respectively. This study investigated the important role of PM for naphthalene removal in bioretention facilities, and provided effective guidelines for runoff pollution control, design of stormwater facilities, and assessment risk of naphthalene.
Collapse
Affiliation(s)
- Yan Xu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China.,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China
| | - Haiyan Li
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China. .,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China.
| | - Xiaoran Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China.,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China
| | - Xiaojuan Bai
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China.,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China
| | - Liyuan Wu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China.,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China
| | - Chaohong Tan
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China.,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China
| | - Ziyang Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China. .,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China.
| |
Collapse
|
3
|
Effects of Water Content and Irrigation of Packing Materials on the Performance of Biofilters and Biotrickling Filters: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10071304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Biofilters (BFs) and biotrickling filters (BTFs) are two types of bioreactors used for treatment of volatile organic compounds (VOCs). Both BFs and BTFs use packing materials in which various microorganisms are immobilised. The water phase in BFs is stationary and used to maintain the humidity of packing materials, while BTFs have a mobile liquid phase. Optimisation of irrigation of packing materials is crucial for effective performance of BFs and BTFs. A literature review is presented on the influence of water content of packing materials on the biofiltration efficiency of various pollutants. Different configurations of BFs and BTFs and their influence on moisture distribution in packing materials were discussed. The review also presents various packing materials and their irrigation control strategies applied in recent biofiltration studies. The sources of this review included recent research articles from scientific journals and several review articles discussing BFs and BTFs.
Collapse
|
4
|
Liu J, Yue P, Zang N, Lu C, Chen X. Removal of odors and VOCs in municipal solid waste comprehensive treatment plants using a novel three-stage integrated biofilter: Performance and bioaerosol emissions. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:48. [PMID: 33996175 PMCID: PMC8109218 DOI: 10.1007/s11783-021-1421-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
A novel three-stage integrated biofilter (TSIBF) composed of acidophilic bacteria reaction segment (ABRS), fungal reaction segment (FRS) and heterotrophic bacteria reaction segment (HBRS) was constructed for the treatment of odors and volatile organic compounds (VOCs)from municipal solid waste (MSW) comprehensive treatment plants. The performance, counts of predominant microorganisms, and bioaerosol emissions of a full-scale TSIBF system were studied. High and stable removal efficiencies of hydrogen sulfide, ammonia and VOCs could be achieved with the TSIBF system, and the emissions of culturable heterotrophic bacteria, fungi and acidophilic sulfur bacteria were relatively low. The removal efficiencies of different odors and VOCs, emissions of culturable microorganisms, and types of predominant microorganisms were different in the ABRS, FRS and HBRS due to the differences in reaction conditions and mass transfer in each segment. The emissions of bioaerosols from the TSIBF depended on the capture of microorganisms and their volatilization from the packing. The rational segmentation, filling of high-density packings and the accumulation of the predominant functional microorganisms in each segment enhanced the capture effect of the bioaerosols, thus reducing the emissions of microorganisms from the bioreactor.
Collapse
Affiliation(s)
- Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044 China
- Department of Environmental Science and Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044 China
| | - Peng Yue
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044 China
- Department of Environmental Science and Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044 China
| | - Nana Zang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044 China
- Department of Environmental Science and Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044 China
| | - Chen Lu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044 China
- Department of Environmental Science and Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044 China
| | - Xinyue Chen
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044 China
- Department of Environmental Science and Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044 China
| |
Collapse
|