1
|
Sha G, Wu Z, Chen T, Zhang G, Shen J, Zhao X, Wang L. Mechanisms for more efficient antibiotics and antibiotic resistance genes removal during industrialized treatment of over 200 tons of tylosin and spectinomycin mycelial dregs by integrated meta-omics. BIORESOURCE TECHNOLOGY 2024; 401:130715. [PMID: 38641304 DOI: 10.1016/j.biortech.2024.130715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
To mitigate the environmental risks posed by the accumulation of antibiotic mycelial dregs (AMDs), this study first attempted over 200 tons of mass production fermentation (MP) using tylosin and spectinomycin mycelial dregs alongside pilot-scale fermentation (PS) for comparison, utilizing the integrated-omics and qPCR approaches. Co-fermentation results showed that both antibiotics were effectively removed in all treatments, with an average removal rate of 92%. Antibiotic resistance gene (ARG)-related metabolic pathways showed that rapid degradation of antibiotics was associated with enzymes that inactivate macrolides and aminoglycosides (e.g., K06979, K07027, K05593). Interestingly, MP fermentations with optimized conditions had more efficient ARGs removal because homogenization permitted faster microbial succession, with more stable removal of antibiotic resistant bacteria and mobile genetic elements. Moreover, Bacillus reached 75% and secreted antioxidant enzymes that might inhibit horizontal gene transfer of ARGs. The findings confirmed the advantages of MP fermentation and provided a scientific basis for other AMDs.
Collapse
Affiliation(s)
- Guomeng Sha
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Zhengwen Wu
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Tong Chen
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Guangen Zhang
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Jianguo Shen
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Liu P, Qin S, Wang J, Zhang S, Tian Y, Zhang F, Liu C, Cao L, Zhou Y, Wang L, Wei Z, Zhang S. Effective CO 2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121972. [PMID: 37295710 DOI: 10.1016/j.envpol.2023.121972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis pre-carbonization coupled with pyrolytic activation. The results indicated the activation under mild conditions (600 °C, KOH/OC = 2) was able to increase micropores and reduce the loss of in-situ nitrogen content. The developed microporous structure was beneficial for the filling adsorption of CO2, and the in-situ nitrogen doping in a high oxygen-containing carbon framework also strengthened the electrostatic adsorption with CO2. The maximum CO2 adsorption reached 4.38 mmol g-1 and 6.40 mmol g-1 at 25 °C and 0 °C (1 bar), respectively, with high CO2/N2 selectivity (32/1) and excellent reusability (decreased by 4% after 5 cycles). This study demonstrates the good application potential of oxytetracycline fermentation residue as in-situ nitrogen-doped nanoporous carbon materials for CO2 capture.
Collapse
Affiliation(s)
- Peiliang Liu
- Miami College, Henan University, Kaifeng, 475004, China
| | - Shumeng Qin
- Miami College, Henan University, Kaifeng, 475004, China
| | - Jieni Wang
- Miami College, Henan University, Kaifeng, 475004, China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Shuqin Zhang
- Miami College, Henan University, Kaifeng, 475004, China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yijun Tian
- Miami College, Henan University, Kaifeng, 475004, China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Fangfang Zhang
- Miami College, Henan University, Kaifeng, 475004, China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Chenxiao Liu
- Miami College, Henan University, Kaifeng, 475004, China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng, 475004, China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Yanmei Zhou
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Lin Wang
- Miami College, Henan University, Kaifeng, 475004, China
| | - Zhangdong Wei
- Miami College, Henan University, Kaifeng, 475004, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
3
|
Qin S, Liu P, Wang J, Liu C, Zhang S, Tian Y, Zhang F, Wang L, Cao L, Zhang J, Zhang S. In Situ N, O Co-Doped Nanoporous Carbon Derived from Mixed Egg and Rice Waste as Green Supercapacitor. Molecules 2023; 28:6543. [PMID: 37764320 PMCID: PMC10536363 DOI: 10.3390/molecules28186543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The conversion of nitrogen-oxygen-rich biomass wastes into heteroatomic co-doped nanostructured carbons used as energy storage materials has received widespread attention. In this study, an in situ nitrogen-oxygen co-doped porous carbon was prepared for supercapacitor applications via a two-step method of pre-carbonization and pyrolytic activation using mixed egg yolk/white and rice waste. The optimal sample (YPAC-1) was found to have a 3D honeycomb structure composed of abundant micropores and mesopores with a high specific surface area of 1572.1 m2 g-1, which provided abundant storage space and a wide transport path for electrolyte ions. Notably, the specific capacitance of the constructed three-electrode system was as high as 446.22 F g-1 at a current density of 1 A g-1 and remained above 50% at 10 A g-1. The capacitance retention was 82.26% after up to 10,000 cycles. The symmetrical capacitor based on YPAC-1 with a two-electrode structure exhibited an energy density of 8.3 Wh kg-1 when the power density was 136 W kg-1. These results indicate that porous carbon materials prepared from mixed protein and carbohydrate waste have promising applications in the field of supercapacitors.
Collapse
Affiliation(s)
- Shumeng Qin
- Miami College, Henan University, Kaifeng 475004, China; (S.Q.); (P.L.); (J.W.); (C.L.); (S.Z.); (Y.T.); (F.Z.); (L.W.)
| | - Peiliang Liu
- Miami College, Henan University, Kaifeng 475004, China; (S.Q.); (P.L.); (J.W.); (C.L.); (S.Z.); (Y.T.); (F.Z.); (L.W.)
| | - Jieni Wang
- Miami College, Henan University, Kaifeng 475004, China; (S.Q.); (P.L.); (J.W.); (C.L.); (S.Z.); (Y.T.); (F.Z.); (L.W.)
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China;
| | - Chenxiao Liu
- Miami College, Henan University, Kaifeng 475004, China; (S.Q.); (P.L.); (J.W.); (C.L.); (S.Z.); (Y.T.); (F.Z.); (L.W.)
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China;
| | - Shuqin Zhang
- Miami College, Henan University, Kaifeng 475004, China; (S.Q.); (P.L.); (J.W.); (C.L.); (S.Z.); (Y.T.); (F.Z.); (L.W.)
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China;
| | - Yijun Tian
- Miami College, Henan University, Kaifeng 475004, China; (S.Q.); (P.L.); (J.W.); (C.L.); (S.Z.); (Y.T.); (F.Z.); (L.W.)
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China;
| | - Fangfang Zhang
- Miami College, Henan University, Kaifeng 475004, China; (S.Q.); (P.L.); (J.W.); (C.L.); (S.Z.); (Y.T.); (F.Z.); (L.W.)
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China;
| | - Lin Wang
- Miami College, Henan University, Kaifeng 475004, China; (S.Q.); (P.L.); (J.W.); (C.L.); (S.Z.); (Y.T.); (F.Z.); (L.W.)
| | - Leichang Cao
- Miami College, Henan University, Kaifeng 475004, China; (S.Q.); (P.L.); (J.W.); (C.L.); (S.Z.); (Y.T.); (F.Z.); (L.W.)
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China;
| | - Jinglai Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China;
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China;
| |
Collapse
|
4
|
Qin S, Liu P, Wang J, Liu C, Wang Q, Chen X, Zhang S, Tian Y, Zhang F, Wang L, Wei Z, Cao L, Zhang J, Zhang S. In situ N, O co-doped porous carbon derived from antibiotic fermentation residues as electrode material for high-performance supercapacitors. RSC Adv 2023; 13:24140-24149. [PMID: 37577085 PMCID: PMC10415863 DOI: 10.1039/d3ra04164f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023] Open
Abstract
With the widespread use of antibiotics, the safe utilization of waste antibiotic fermentation residues has become an urgent issue to be resolved. In this study, in situ N, O co-doped porous carbon was prepared using fresh oxytetracycline fermentation residue under the mild activation of the green activator K2CO3. The optimal sample exhibited a 3D grid carbon skeleton structure, excellent specific surface area (SBET = 948 m2 g-1), and high nitrogen and oxygen content (N = 3.42 wt%, O = 14.86 wt%). Benefiting from its developed morphology, this sample demonstrated excellent electrochemical performance with a high specific capacitance of 310 F g-1 at a current density of 0.5 A g-1 in the three-electrode system. Moreover, it exhibited superior cycling stability with only a 5.32% loss of capacity after 10 000 cycles in 6 M KOH aqueous electrolyte. Furthermore, the symmetric supercapacitor prepared from it exhibited a maximum energy density of 7.2 W h kg-1 at a power density of 124.9 W kg-1, demonstrating its promising application prospects. This study provided a green and facile process for the sustainable and harmless treatment of antibiotic fermentation residues.
Collapse
Affiliation(s)
- Shumeng Qin
- Miami College, Henan University Kaifeng 475004 China
| | - Peiliang Liu
- Miami College, Henan University Kaifeng 475004 China
| | - Jieni Wang
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
- Miami College, Henan University Kaifeng 475004 China
| | - Chenxiao Liu
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
- Miami College, Henan University Kaifeng 475004 China
| | - Qizhao Wang
- Miami College, Henan University Kaifeng 475004 China
| | - Xuanyu Chen
- Miami College, Henan University Kaifeng 475004 China
| | - Shuqin Zhang
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
- Miami College, Henan University Kaifeng 475004 China
| | - Yijun Tian
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
- Miami College, Henan University Kaifeng 475004 China
| | - Fangfang Zhang
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
- Miami College, Henan University Kaifeng 475004 China
| | - Lin Wang
- Miami College, Henan University Kaifeng 475004 China
| | - Zhangdong Wei
- Miami College, Henan University Kaifeng 475004 China
| | - Leichang Cao
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
- Miami College, Henan University Kaifeng 475004 China
| | - Jinglai Zhang
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University Shanghai 200433 China
| |
Collapse
|
5
|
Chen B, Guan H, Zhang Y, Liu S, Zhao B, Zhong C, Zhang H, Ding W, Song A, Zhu D, Liu L, Wulan B, Li H, Liu G, Feng X. Performance and mechanism of Pb2+ and Cd2+ ions’ adsorption via modified antibiotic residue-based hydrochar. Heliyon 2023; 9:e14930. [PMID: 37077678 PMCID: PMC10106921 DOI: 10.1016/j.heliyon.2023.e14930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
This study investigated the hydrochar-based porous carbon prepared by combining the technical route of hydrothermal carbonization (HTC) + chemical activation. The hydrochar morphology was adjusted by changing the activation reaction conditions and adding metal salts. Experiments showed that the activation of KHCO3 significantly increased the specific surface area and pore size of the hydrochar. Besides, oxygen-rich groups on the surface of the activated hydrochar interacted with heavy metal ions to achieve efficient adsorption. The activated hydrothermal carbon adsorption capacity for Pb2+ and Cd2+ ions reached 289 and 186 mg/g, respectively. The adsorption mechanism study indicated that the adsorption of Pb2+ and Cd2+ was related to electrostatic attraction, ion exchange, and complexation reactions. The "HTC + chemical activation" technology was environmentally friendly and effectively implemented antibiotic residues. Carbon materials with high adsorption capacity can be prepared so that biomass resources can be utilized with excessive value, as a consequence presenting technical assistance for the comprehensive disposal of organic waste in the pharmaceutical industry and establishing a green and clean production system.
Collapse
Affiliation(s)
- Bingtong Chen
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Haibin Guan
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
- Corresponding author.
| | - Yue Zhang
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Suxiang Liu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Baofeng Zhao
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Cunqing Zhong
- Heze Institute of Product Inspection and Testing, Heze, 274000, Shandong, China
| | - Heming Zhang
- Heze Institute of Product Inspection and Testing, Heze, 274000, Shandong, China
| | - Wenran Ding
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Angang Song
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Di Zhu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
- Corresponding author.
| | - Liangbei Liu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Bari Wulan
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Huan Li
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Guofu Liu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Xiangyu Feng
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| |
Collapse
|
6
|
Gong P, Liu H, Wang G, Yao J, Dai X. Enhanced depletion of antibiotics and accelerated estabilization of dissolved organic matter by hydrothermal pretreatment during composting of oxytetracycline fermentation residue. BIORESOURCE TECHNOLOGY 2021; 339:125618. [PMID: 34325386 DOI: 10.1016/j.biortech.2021.125618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
In this study, the feasibility of employing hydrothermal pretreatment (HTPT) to improve the composting of oxytetracycline fermentation residue (OFR) was evaluated by investigating the depletion of oxytetracycline (OTC) and evolution of dissolved organic matter (DOM). HTPT drastically declined the final content of OTC and its main transformation intermediates in OFR compost from 89.96 to 2.61 mg/kg. Although HTPT slightly increased the DOM content and significantly decreased the contents of biodegradable and humified compounds in OFR compost, it did not significantly change the germination index of OFR compost. Nevertheless, the time required for the overall pattern of DOM parameters to reach stabilization was shortened from 28 to 14 days by HTPT. Taken together, although HTPT did not change the maturity degree of OFR compost, it obviously shortened the OFR composting cycle and lowered the potential risk of OFR compost, confirming that HTPT could efficiently improve the OFR composting.
Collapse
Affiliation(s)
- Picheng Gong
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Huiling Liu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Gang Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jie Yao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|