1
|
Yang T, Yu L, Xu J, Ying L, Jia Y, Zheng Y, Zhou B, Li F. Correlation between standard sperm parameters and sperm DNA fragmentation from 11,339 samples. Syst Biol Reprod Med 2024; 70:91-100. [PMID: 38630599 DOI: 10.1080/19396368.2024.2333285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/17/2024] [Indexed: 04/19/2024]
Abstract
Conventional semen parameters have long been considered fundamental in male fertility analyses. However, doubts have been raised regarding the clinical utility of the assessment of spermatozoa (sperm) DNA damage. In this retrospective study, we investigated the potential correlation between conventional semen parameters and semen DNA fragmentation (SDF) assessed as sperm DNA damage, in 11,339 semen samples collected between January 2019 and June 2022. We observed significant negative correlations between the DNA fragmentation index (DFI) and sperm viability (correlation coefficient [r] = -0.514) as well as progressive sperm motility (r = -0.512, p < 0.05). Samples were categorized into three groups according to DFI levels (Groups A, B, and C: ≤15%, 15 < DFI ≤30%, and >30%, respectively). Furthermore, the percentage of semen samples with normal sperm conventional parameters in Groups A, B, and C was 76.7% (4369/5697), 61.4% (2351/3827), and 39.7% (721/1815), respectively. Moreover, according to the reference values of conventional sperm parameters, the samples were divided into Groups F, G, and H with all normal, only one abnormal, and > two abnormal parameters, respectively. In addition, the proportions of samples with abnormal DFI values (>30) in Groups F, G, and H were 9.7% (721/7441), 23.1% (618/2676), and 39.0% (476/1222), respectively. Multivariate logistic regression models demonstrated that sperm vitality, progressive sperm motility, normal sperm form, total sperm count, semen volume, age, and some sperm kinematics collectively improved the area under the receiver operating characteristic curve (AUROC) to 0.861, surpassing the predictive value of a single predictor of pathologically damaged sperm DNA. Our study suggests that samples with abnormal sperm parameters may have a higher likelihood of high DNA fragmentation. Furthermore, certain semen parameters could be potential indicators of sperm DNA fragmentation, aiding sperm selection in assisted reproductive procedures.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Lin Yu
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Jinyan Xu
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Lijuan Ying
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Yelin Jia
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Yan Zheng
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Bin Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Clinical Research Center for Birth Defects of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| |
Collapse
|
2
|
Cai K, Wang L, Tong Y, Pu X, Guo T, Xu H, Xie J, Wang L, Bai T. Negative association of atmospheric pollutants with semen quality: A cross-sectional study in Taiyuan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116941. [PMID: 39208577 DOI: 10.1016/j.ecoenv.2024.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND In recent decades, the quality of male semen has decreased worldwide. Air pollution has been linked to lower semen quality in several studies. However, the effects of atmospheric pollutants on different semen characteristics have not always been consistent. The aim of this study was to investigate the association between the Air Quality Index (AQI) and six atmospheric pollutants (PM2.5, PM10, SO2, NO2, CO, and O3), semen quality, and their key exposure window periods. METHODS This study included 1711 semen samples collected at the reproductive clinics of the First Affiliated Hospital of Shanxi Medical University in Taiyuan, Shanxi, China, from October 10, 2021, to September 30, 2022. We evaluated the association of AQI and six atmospheric pollutants with semen quality parameters throughout sperm development and three key exposure windows in men using single-pollutant models, double-pollutant models, and subgroup analyses of semen quality-eligible groups. RESULTS Both the single-pollutant model and subgroup analyses showed that PM, CO, and O3 levels were negatively correlated with total and progressive motility. At 70-90 d before semen collection, CO exposure and semen volume (β =-1.341, 95 % CI: -1.805, -0.877, P <0.001), total motility (β =-2.593, 95 % CI: -3.425, -1.761, P <0.001), and progressive motility (β =-4.658, 95 % CI: -5.556, -3.760, P <0.001) were negatively correlated. At 0-9 days before semen collection, CO was negatively correlated with normal morphology (β =-3.403, 95 % CI: -5.099, -1.708, P <0.001). Additionally, the AQI was adversely associated with total and progressive motility in subgroup analyses of the semen quality-eligible groups. CONCLUSIONS During the entire sperm development process, multiple air pollutants were determined to have an adverse correlation with semen quality parameters. AQI was significant marker for the combined effects of various atmospheric pollutants on male reproductive health.
Collapse
Affiliation(s)
- Ke Cai
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Li Wang
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; Center for Early Childhood Development, Shanxi Medical University, Taiyuan 030001, China
| | - Yujun Tong
- Department of Pathology, the First Clinical School of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Xin Pu
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Tingyu Guo
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Hexiang Xu
- Department of Pathology, the First Clinical School of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Jialin Xie
- Department of Pathology, the First Clinical School of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Liyan Wang
- Fenyang Medical College, Shanxi Medical University, Luliang 032200, China
| | - Tao Bai
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Department of Pathology, the First Clinical School of Medicine, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
3
|
Dai X, Liu G, Pan C, Li F, Liu Y, Liu J, Chen G, Zhang M, Fei Q, Zheng J, Huang H, Wu Z. Individual and joint associations of air pollutants exposure with semen quality: A retrospective longitudinal study in Wenzhou, China. Int Arch Occup Environ Health 2024; 97:901-913. [PMID: 39060503 DOI: 10.1007/s00420-024-02095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE The impact of air pollution on semen quality has been confirmed, yet the joint effect remains unclear. We evaluate the individual and joint associations of particulate (PM2.5 and PM10) and gaseous pollutants (NO2, SO2, O3 and CO) with semen quality. METHODS We included 5,114 men in this study from 2014 to 2022. The individual and joint associations were measured by multiple linear regression models. RESULTS Sperm motility and semen volume were inversely associated with pollutant concentrations during every stage of sperm development, especially at lag days 0-9 and 10-14 (all P < 0.05). Stratified analyses showed that the study pollutants (except CO) had a positive effect on semen concentration during the stage of sperm development, especially in spring and autumn, while a decreased total sperm number was associated with CO (all P < 0.05). However, joint associations of particulate and gaseous pollutants with semen quality parameters were not statistically significant (all P > 0.05). CONCLUSIONS During all stages of sperm development, particulate and gaseous pollutants had individual negative impacts on sperm motility and semen volume, and these impacts were less pronounced in spring and autumn. Our findings highlight the importance and necessity of reducing the exposure to pollutants especially in the critical stage of sperm development to improve semen quality.
Collapse
Affiliation(s)
- Xuchao Dai
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Guangyuan Liu
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Chengshuang Pan
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Feidi Li
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yawen Liu
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiaxin Liu
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Gang Chen
- Hospital Infection Control Management Department, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Mengqi Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qianjin Fei
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiujia Zheng
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hong Huang
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou, 325035, China.
| | - Zhigang Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325000, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
4
|
Yang T, Liu B, Luo X, Shen L, Xiao X, Wang Y, Li S, Zhang L, Zhou B, Li F. Sperm quality and sexual function after the first COVID-19 infection during the omicron surge: an observational study in southwest China. Transl Androl Urol 2024; 13:1835-1846. [PMID: 39434742 PMCID: PMC11491219 DOI: 10.21037/tau-24-173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
Background As the Omicron variant became the dominant coronavirus disease 2019 (COVID-19) strain and the threat to human health decreased, the impact of COVID-19 on male reproductive health and semen quality may have changed. In this prospective observational study, we aimed to investigate the changes in semen quality and sexual function before and after the Omicron variant infection by self-controlled study and to explore the influence of Omicron variant infection on male reproductive health. Methods We recruited 373 participants who provided semen samples before their first COVID-19 infection. During the subsequent follow-up, only 154 participants provided the second semen samples, 11 of whom were not infected with COVID-19. Sperm quality was assessed approximately 45 and 90 days after COVID-19, as well as before infection. Results Semen parameters, including total sperm count, total forward sperm, progressive motility, and sperm concentration, significantly declined 45 days after COVID-19 infection. At 90 days after infection, the total sperm count, total forward sperm, and sperm concentration gradually increased to pre-infection levels. Participants who experienced fever showed worse semen quality in terms of total forward sperm, sperm concentration, and sperm progressive rate. However, this phenomenon was not observed in the other group infected with COVID-19 without fever or not infected. In addition, 49 (34.3%) of 143 persons confirmed that the COVID-19 infection resulted in changes in sexual function, with an increase in premature ejaculation diagnostic tool (PEDT) scores. Conclusions The results of our self-controlled study indicate that COVID-19 is associated with impaired semen quality early after disease onset. After 1-2 spermatogenesis cycles, the semen quality gradually recovers from the infection. These findings are beneficial for better understanding the COVID-19-associated sequelae, which are fundamental for semen collection during assisted reproduction.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Andrology/Human Sperm Bank of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bo Liu
- Department of Andrology/Human Sperm Bank of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaohong Luo
- Department of Andrology/Human Sperm Bank of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Lingling Shen
- Department of Andrology/Human Sperm Bank of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiao Xiao
- Department of Andrology/Human Sperm Bank of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yanyun Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shiliu Li
- Wuhou District People’s Procuratorate, Chengdu, China
| | - Lin Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bin Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fuping Li
- Department of Andrology/Human Sperm Bank of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
5
|
Shen Z, Zhang F, Guo Z, Qu R, Wei Y, Wang J, Zhang W, Xing X, Zhang Y, Liu J, Tang D. Association between air pollution and male sexual function: A nationwide observational study in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134010. [PMID: 38492404 DOI: 10.1016/j.jhazmat.2024.134010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
This study aimed to explore the associations between air pollution and male sexual function. A total of 5047 male subjects in China were included in this study. The average air pollution exposure (PM2.5, PM10, SO2, CO, NO2, and O3) for the preceding 1, 3, 6, and 12 months before the participants' response was assessed. Male sexual function was evaluated using the International Index of Erectile Function-5 (IIEF-5) and the Premature Ejaculation Diagnostic Tool (PEDT). Generalized linear models were utilized to explore the associations between air pollution and male sexual function. K-prototype algorithm was conducted to identify the association among specific populations. Significant adverse effects on the IIEF-5 score were observed with NO2 exposure during the preceding 1, 3, and 6 months (1 m: β = -5.26E-05; 3 m: β = -4.83E-05; 6 m: β = -4.23E-05, P < 0.05). PM2.5 exposure during the preceding 12 months was found to significantly negatively affect the PEDT after adjusting for confounding variables. Our research indicated negative correlations between air pollutant exposures and male sexual function for the first time. Furthermore, these associations were more pronounced among specific participants who maintain a normal BMI, exhibit extroverted traits, and currently engage in smoking and alcohol consumption.
Collapse
Affiliation(s)
- Ziyuan Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Feng Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Zihan Guo
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xing Xing
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute for Global Health and Development, Peking University, Beijing 100871, China; Ministry of Education, Key Laboratory of Epidemiology of Major Diseases, Peking University, Beijing 100083, China.
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China.
| |
Collapse
|
6
|
Yang T, Tang D, Zhan Y, Seyler BC, Li F, Zhou B. SARS-CoV-2 vaccination and semen quality: a study based on sperm donor candidate data in southwest China. Transl Androl Urol 2024; 13:80-90. [PMID: 38404555 PMCID: PMC10891393 DOI: 10.21037/tau-23-395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/20/2023] [Indexed: 02/27/2024] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic has been a global health crisis and continues to pose risk to population health at the present. Vaccination against this disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a public health priority worldwide. Yet, limited information is available on the potential impact of such vaccines on human fertility. Methods To examine the relationship between COVID-19 vaccination and male fertility, we conducted an observational study on sperm donor candidates in China who received Chinese COVID-19 vaccines between January 1, 2020 to December 31, 2021. Results A total of 2,955 semen samples from 564 individuals were assessed along with vaccination information. Statistical analyses were conducted on both the entire study population and the subgroup of individuals who provided repeated semen samples before and after vaccination. While motility related parameters [progressive rate, curvilinear velocity (VCL), average path velocity (VAP), straight-line velocity (VSL), wobble (WOB), straightness (STR), linearity (LIN), amplitude of lateral head displacement (ALH), beat-cross frequency (BCF)] exhibited statistically significant difference before and after vaccination based on Welch two-sample test, mixed effects regression results based on repeated measures from the same individuals indicated that vaccination was not statistically associated with sperm quality parameters except for VCL, VAP, and VSL. Individual variability was the key determinant of sperm quality variance, with contribution ranging from 19% to 82%. Conclusions Findings from our study could help to enhance current understanding of male reproductive health in the context of the global pandemic.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Andrology/Human Sperm Bank of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Die Tang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Barnabas C. Seyler
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Fuping Li
- Department of Andrology/Human Sperm Bank of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Tian R, Yang T, Xiao C, Li F, Fu L, Zhang L, Cai J, Zeng S, Liao J, Song G, Yu C, Zhang B, Liu Z. Outdoor artificial light at night and male sperm quality: A retrospective cohort study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122927. [PMID: 37977357 DOI: 10.1016/j.envpol.2023.122927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Due to the worldwide increased rate of infertility among reproductive-age couples, there is a growing interest in the relationship between environmental stimuli and human sperm quality. While animal studies have demonstrated the detrimental effects of outdoor artificial light at night (ALAN) on sperm quality, investigations based on human data are lacking. Therefore, we conducted a retrospective cohort study involving 1991 sperm donor candidates and employed multivariate linear regression and restricted cubic spline models to quantify the association between outdoor ALAN and sperm quality. The aim was to determine whether there exists an association between exposure to outdoor ALAN and sperm quality. The study included 1991 sperm donor candidates with the following characteristics: mean [SD] age, 24.98 [4.78] years; mean [SD] BMI, 22.13 [2.60] kg/m2; mean [SD] sleep duration, 7.66 [1.07] hours/day. Outdoor ALAN exposure of study participants ranged from 0 to 100 nW/cm2/sr. Multiple regression analysis on chronic exposure (0-90 days before sperm donation) and human sperm quality revealed the following associations: for CASA primary motion parameters, every 100-unit (nW/cm2/sr) increase in chronic outdoor ALAN was associated with a change of -0.043 [95%CI: 0.073, -0.014] in Linearity (LIN), and -5.523 [95%CI: 9.100, -1.946] in Curvilinear velocity (VCL). For CASA secondary motion parameters, every 100-unit (nW/cm2/sr) increase in chronic outdoor ALAN was associated with a change of -3.873 [95%CI: 4.926, -2.748] in non-progressive motility rate (NP). Furthermore, the primary sperm quality parameter exhibited a decline of -4.740 [95%CI: 8.853, -0.628] in sperm motility rate per 100-unit (nW/cm2/sr) increase in chronic outdoor ALAN. Similar associations were also observed for acute exposure (0-9 days before sperm donation). This retrospective study suggests that poorer sperm quality is more prevalent among adult males residing in areas with higher levels of outdoor ALAN, with a particularly pronounced impact observed in males below the age of 25 years.
Collapse
Affiliation(s)
- Run Tian
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Tingting Yang
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, PR China
| | - Chenghan Xiao
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, PR China
| | - Leyao Fu
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Lu Zhang
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jiarui Cai
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Sixuan Zeng
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Junhao Liao
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Guishuang Song
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chuan Yu
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ben Zhang
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Zhenmi Liu
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
8
|
Zhang Y, Shi W, Zhang M, Xu L, Wu L, Li C, Zhang Z, Cao W, Zhang J, Zeng Q, Sun S. Exposure to PM 2.5, seminal plasma metabolome, and semen quality among Chinese adult men: Association and potential mediation analyses. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132602. [PMID: 37748305 DOI: 10.1016/j.jhazmat.2023.132602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) has been linked to a decline in semen quality, but the underlying mechanisms for this association remain unclear. We aimed to examine whether specific metabolites act as mediators in the association between PM2.5 exposure and changes in semen quality. We conducted untargeted metabolomics analysis using LC-MS/MS platforms to identified seminal plasma metabolites associated with various semen quality parameters among 200 Chinese adult men. Additionally, we performed mediation analyses to examine the effects of the seminal plasma metabolites on the association between PM2.5 exposure and semen quality. We identified 140 differential metabolites between the normal and abnormal semen groups, involving two metabolic pathways: Alanine, aspartate and glutamate metabolism, and Aminoacyl-tRNA biosynthesis. We additionally identified 7 specific seminal plasma metabolites that were associated with discrepant metabolic networks related to semen quality. The mediation analysis revealed that D-Aspartate might play a mediating role in the adverse effects of ambient PM2.5 exposure on both total and progressive motility during spermatogenesis period (70-90 days before ejaculation), with a proportion of mediation up to 16% and 17%, respectively. Exposure to PM2.5 was associated with alterations in D-Aspartate levels, which might partially mediate the association between PM2.5 and reduced sperm motility.
Collapse
Affiliation(s)
- Yangchang Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wanying Shi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lufei Xu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Human Resources, Peking University Cancer Hospital & Institute, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road Binjiang District, Hangzhou 310051, China
| | - Chunrong Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhenyu Zhang
- Department of Global Health, Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing 100191, China
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China
| | - Jie Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
9
|
Deng X, Wang Q, Shi C, Wei J, Lv Z, Huang S, Duan YG, Zhang X, Liu Y. Heat wave exposure and semen quality in sperm donation volunteers: A retrospective longitudinal study in south China. ENVIRONMENTAL RESEARCH 2023; 236:116665. [PMID: 37451571 DOI: 10.1016/j.envres.2023.116665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Previous studies have suggested an association between non-optimum ambient temperature and decreased semen quality. However, the effect of exposure to heat waves on semen quality remains unclear. METHODS Volunteers who intended to donate sperm in Guangdong provincial human sperm bank enrolled. Heat waves were defined by temperature threshold and duration, with a total of 9 definitions were employed, specifying daily mean temperature exceeding the 85th, 90th, or 95th percentile for at least 2, 3, or 4 consecutive days. Residential exposure to heat waves during 0-90 days before ejaculation was evaluated using a validated gridded dataset on ambient temperature. Association and potential windows of susceptibility were evaluated and identified using linear mixed models and distributed lag non-linear models. RESULTS A total of 2183 sperm donation volunteers underwent 8632 semen analyses from 2018 to 2019. Exposure to heat wave defined as daily mean temperature exceeding the 95th percentile for at least 4 consecutive days (P95-D4) was significantly associated with a 0.11 (95% confidence interval [CI]: 0.03, 0.18) ml, 3.36 (1.35, 5.38) × 106/ml, 16.93 (7.95, 25.91) × 106, and 2.11% (1.4%, 2.83%) reduction in semen volume, sperm concentration, total sperm number, and normal forms, respectively; whereas exposure to heat wave defined as P90-D4 was significantly associated with a 1.98% (1.47%, 2.48%) and 2.08% (1.57%, 2.58%) reduction in total motility and progressive motility, respectively. Sperm count and morphology were susceptible to heat wave exposure during the early stage of spermatogenesis, while sperm motility was susceptible to exposure during the late stage. CONCLUSION Heat wave exposure was significantly associated with a reduction in semen quality. The windows of susceptibility during 0-90 days before ejaculation varied across sperm count, motility, and morphology. Our findings suggest that reducing heat wave exposure before ejaculation may benefit sperm donation volunteers and those attempting to conceive.
Collapse
Affiliation(s)
- Xinyi Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, Guangdong, 510600, China
| | - Chunxiang Shi
- Meteorological Data Laboratory, National Meteorological Information Center, Beijing, 100081, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA
| | - Ziquan Lv
- Central Laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Centre of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, Guangdong, 510600, China.
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
10
|
Li X, Abdullah LC, Sobri S, Syazarudin Md Said M, Aslina Hussain S, Poh Aun T, Hu J. Long-term spatiotemporal evolution and coordinated control of air pollutants in a typical mega-mountain city of Cheng-Yu region under the "dual carbon" goal. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:649-678. [PMID: 37449903 DOI: 10.1080/10962247.2023.2232744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for megacities to formulate relevant air pollution prevention and control measures and achieve carbon neutrality goals. Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain-city in China, environmental problems are complex and sensitive. This research aims to investigate the exceeding standard levels and spatio-temporal evolution of criteria pollutants between 2014 and 2020. The results indicated that PM10, PM2.5, CO and SO2 were decreased significantly by 45.91%, 52.86%, 38.89% and 66.67%, respectively. Conversely, the concentration of pollutant O3 present a fluctuating growth and found a "seesaw" phenomenon between it and PM. Furthermore, PM and O3 are highest in winter and summer, respectively. SO2, NO2, CO, and PM showed a "U-shaped", and O3 showed an inverted "U-shaped" seasonal variation. PM and O3 concentrations are still far behind the WHO, 2021AQGs standards. Significant spatial heterogeneity was observed in air pollution distribution. These results are of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, and formulate a regional carbon peaking roadmap under climate coordination. Besides, it can provide an important platform for exploring air pollution in typical terrain around the world and provide references for related epidemiological research.Implications: Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain city, environmental problems are complex and sensitive. Under the background of the "14th Five-Year Plan", the construction of the "Cheng-Yu Dual-City Economic Circle" and the "Dual-Carbon" goal, this article comprehensively discussed the annual and seasonal excess levels and spatiotemporal evolution of pollutants under the multiple policy and the newest international standards (WHO,2021AQG) backgrounds from 2014 to 2020 in Chongqing. Furthermore, suggestions and measures related to the collaborative management of pollutants were discussed. Finally, limitations and recommendations were also put forward.Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for cities to formulate relevant air pollution control measures and achieve carbon neutrality goals. This study is of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, study and formulate a regional carbon peaking roadmap under climate coordination and an action plan for sustained improvement of air quality.In addition, this research can advanced our understanding of air pollution in complex terrain. Furthermore, it also promote the construction of the China national strategic Cheng-Yu economic circle and build a beautiful west. Moreover, it provides scientific insights for local policymakers to guide smart urban planning, industrial layout, energy structure, and transportation planning to improve air quality throughout the Cheng-Yu region. Finally, this is also conducive to future scientific research in other regions of China, and even megacities with complex terrain in the world.
Collapse
Affiliation(s)
- Xiaoju Li
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
- Department of Resource and Environment, Xichang University, Xichang City, Sichuan Province, China
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Shafreeza Sobri
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Mohamad Syazarudin Md Said
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Siti Aslina Hussain
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Tan Poh Aun
- SOx NOx Asia Sdn Bhd, Subang Jaya, Selangor, Malaysia
| | - Jinzhao Hu
- Department of Resource and Environment, Xichang University, Xichang City, Sichuan Province, China
| |
Collapse
|
11
|
Xu R, Zhong Y, Li R, Li Y, Zhong Z, Liu T, Wang Q, Lv Z, Huang S, Duan YG, Zhang X, Liu Y. Association between exposure to ambient air pollution and semen quality: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161892. [PMID: 36731563 DOI: 10.1016/j.scitotenv.2023.161892] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Accumulating evidence has linked exposure to ambient air pollution to a reduction in semen quality; however, the exposure-response associations are yet to be synthesized. OBJECTIVE To summarize the exposure-response associations between air pollution and semen quality. METHODS We systematically searched PubMed, Embase, and Web of Science for relevant studies published before April 20, 2022. Studies investigating the exposure-response association of PM2.5, PM10, SO2, NO2, CO, and O3 with semen quality written in English were included. Semen quality parameters included semen volume, sperm concentration, total sperm number, total motility, progressive motility, and normal forms. Random-effects and fixed-effects models were performed to synthesize associations in the meta-analysis. RESULTS The search returned 850 studies, 11 of which were eligible for meta-analysis. Each 10 μg/m3 increase of exposure to PM10 and SO2 was respectively associated with a 2.18 % (95 % confidence interval [CI]: 0.10 %-4.21 %) and 8.61 % (1.00 %-15.63 %) reduction in sperm concentration, and a 2.76 % (0.10 %-5.35 %) and 9.52 % (5.82 %-13.93 %) reduction in total sperm number. Each 10 μg/m3 increase of exposure to PM2.5 and PM10 was respectively associated with a 1.06 % (95 % CI: 0.31 %-1.82 %) and 0.75 % (0.43 %-1.08 %) reduction in total motility, and a 0.55 % (0.09 %-1.01 %) and 0.31 % (0.06 %-0.56 %) reduction in progressive motility. No association was observed for PM2.5 or PM10 with semen volume; PM2.5, NO2, CO, or O3 with sperm concentration or total sperm number; and gaseous air pollutants with total or progressive motility. The association between air pollution and normal forms was not summarized due to insufficient number of studies. No significant publication bias was detected. CONCLUSIONS Exposure to ambient PM2.5, PM10, and SO2 was inversely associated with sperm concentration, total sperm number, total motility, and/or progressive motility. Our findings add to the evidence that air pollution may lead to adverse effects on male reproductive system and suggest that reducing exposure to air pollution may help maintain better semen quality.
Collapse
Affiliation(s)
- Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yanling Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rui Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zihua Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Ziquan Lv
- Central laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Centre of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
12
|
Guo L, Lin H, Li H, Jin X, Zhao L, Li P, Xu N, Xu S, Fang J, Wu S, Liu Q. Exposure of ambient PM 2.5 during gametogenesis period affects the birth outcome: Results from the project ELEFANT. ENVIRONMENTAL RESEARCH 2023; 220:115204. [PMID: 36592810 DOI: 10.1016/j.envres.2022.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/02/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Various environmental and behavioural factors influence neonatal health. Gamete formation (gametogenesis) is a crucial period which affects embryo development and neonatal health and ambient air pollution exposure at this stage may lead to an adverse birth outcome. Previous epidemiological and toxicological research demonstrated a strong association between maternal ambient air pollution exposure and adverse birth outcomes. However, the joint exposure-outcome of paternal exposure (76 days before the last menstruation and 14 days after the last menstruation) and maternal exposure (14 days after the last menstruation) when exploring the mechanism of the influence of air pollutants on pregnancy outcome and neonatal health remains unexplored. Here, in the Project Environmental and LifEstyle FActors iN metabolic health throughout life-course Trajectories (ELEFANT), we collected the data of 10,960 singleton pregnant women with 24-42 completed gestational weeks and included them in this study. A multinominal logistic regression model was applied to investigate the association between adverse birth outcomes and ambient PM2.5 exposure levels during spermatogenesis and oogenesis. Results from the binary classification of ambient PM2.5 exposure showed that the risk of abnormal birthweight was significantly greater when ambient PM2.5 exposure was both higher during spermatogenesis and oogenesis, with RRs of 1.86 (95% CI: 1.02, 3.39). The risk of macrosomia (RR: 1.88 (95% CI: 1.13, 3.12)) increased significantly when ambient PM2.5 levels were higher during spermatogenesis. Primiparity and primigravity are more likely to be influenced by higher ambient PM2.5 levels during spermatogenesis. In conclusion, more attention should be paid to higher exposure level of ambient PM2.5 during spermatogenesis.
Collapse
Affiliation(s)
- Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Huishu Lin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Hongyu Li
- Office for National Clinical Research Center for Geriatric Diseases, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Xiaobin Jin
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Penghui Li
- Department of Environmental Science, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Naiwei Xu
- Department of Operation Management, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Song Xu
- Department of Operation Management, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junkai Fang
- Tianjin Healthcare Affair Center, Tianjin, 300041, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shanxi, China.
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
13
|
Ma Y, Peng X, Pan Z, Hu C, Xia Q, Cai G, Cao Y, Pan F. Linear and non-linear relationships between sulfur dioxide and semen quality: A longitudinal study in Anhui, China. ENVIRONMENTAL RESEARCH 2023; 216:114731. [PMID: 36368370 DOI: 10.1016/j.envres.2022.114731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Existing evidence indicates that ambient air pollutants pose a threat to human semen quality; however, these findings are sparse and controversial. Besides, their non-linear dose-response relationship has not yet been well investigated. This study aimed to explore the linear and non-linear associations of gaseous air pollutants exposure with semen quality based on a large longitudinal cohort. A total of 15,112 males (with 28,267 semen tests) from the Anhui prospective assisted reproduction cohort were analyzed. Individual air pollutants exposure before semen tests in four exposure windows (i.e., 0-9, 10-14, 70-90, and 0-90 days) were estimated by inverse distance weighting interpolation. Linear mixed-effects models, cubic spline analysis and piecewise regression were used to test the potential linear and non-linear dose-response relationships. Ambient SO2 exposure was negatively associated with all semen quality parameters (all p values < 0.05), except for the progressive motility in the 0-90 and 70-90 days exposure windows. There were 'J' or 'U' shaped dose-response relationships of ambient SO2 exposure with total sperm count, progressive motility, total motility, progressively motile sperm count, and total motile sperm count (p values for non-linearity < 0.05), but not sperm concentration. Piecewise regression analysis also indicated a negative association of SO2 exposure with semen quality only when SO2 exposure was below the cut-off points identified by cubic spline analyses, which were all smaller than 40 μg/m3, the 2021 updated WHO air quality guideline level for SO2 exposure. Overall, we found that SO2 exposure was negatively associated with semen quality. Ambient SO2 exposure could reach the maximum hazardous dose even below the WHO air quality guideline level for SO2 exposure, suggesting a refinement to the current guideline.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoqing Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; School of Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Zhipeng Pan
- Department of Medical Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Qing Xia
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
14
|
Yu X, Wang Q, Wei J, Zeng Q, Xiao L, Ni H, Xu T, Wu H, Guo P, Zhang X. Impacts of traffic-related particulate matter pollution on semen quality: A retrospective cohort study relying on the random forest model in a megacity of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158387. [PMID: 36049696 DOI: 10.1016/j.scitotenv.2022.158387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Emerging evidence shows the detrimental impacts of particulate matter (PM) on poor semen quality. High-resolution estimates of PM concentrations are conducive to evaluating accurate associations between traffic-related PM exposure and semen quality. METHODS In this study, we firstly developed a random forest model incorporating meteorological factors, land-use information, traffic-related variables, and other spatiotemporal predictors to estimate daily traffic-related PM concentrations, including PM2.5, PM10, and PM1. Then we enrolled 1310 semen donors corresponding to 4912 semen samples during the study period from January 1, 2019, and December 31, 2019 in Guangzhou city, China. Linear mixed models were employed to associate individual exposures to traffic-related PM during the entire (0-90 lag days) and key periods (0-37 and 34-77 lag days) with semen quality parameters, including sperm concentration, sperm count, progressive motility and total motility. RESULTS The results showed that decreased sperm concentration was associated with PM10 exposures (β: -0.21, 95 % CI: -0.35, -0.07), sperm count was inversely related to both PM2.5 (β: -0.19, 95 % CI: -0.35, -0.02) and PM10 (β: -0.19, 95 % CI: -0.33, -0.05) during the 0-90 days lag exposure window. Besides, PM2.5 and PM10 might diminish sperm concentration by mainly affecting the late phase of sperm development (0-37 lag days). Stratified analyses suggested that PBF and drinking seemed to modify the associations between PM exposure and sperm motility. We did not observe any significant associations of PM1 exposures with semen parameters. CONCLUSION Our results indicate that exposure to traffic-related PM2.5 and PM10 pollution throughout spermatogenesis may adversely affect semen quality, especially sperm concentration and count. The findings provided more evidence for the negative associations between traffic-related PM exposure and semen quality, highlighting the necessity to reduce ambient air pollution through environmental policy.
Collapse
Affiliation(s)
- Xiaolin Yu
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Qiling Wang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China; Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China
| | - Jing Wei
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Qinghui Zeng
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Lina Xiao
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Haobo Ni
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Ting Xu
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Haisheng Wu
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou 515041, China
| | - Xinzong Zhang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China
| |
Collapse
|
15
|
Cheng Y, Tang Q, Lu Y, Li M, Zhou Y, Wu P, Li J, Pan F, Han X, Chen M, Lu C, Wang X, Wu W, Xia Y. Semen quality and sperm DNA methylation in relation to long-term exposure to air pollution in fertile men: A cross-sectional study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118994. [PMID: 35167929 DOI: 10.1016/j.envpol.2022.118994] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Some studies have examined the association between air pollution and semen quality. While it is less of evidence on the sperm quality after long-term air pollution exposure, especially the co-exposure of different air pollution components. Additionally, the role of DNA methylation in it hasn't been confirmed. This study aimed to investigate whether long-term exposure to air pollution was associated with semen quality, as well as to explore the effect of sperm DNA methylation in such association. From 2014 to 2016, 1607 fertile men were enrolled to evaluate 14 parameters of semen quality. Exposure window was defined as one-year before semen sampling. Multivariable linear regression and weighted quantile sum (WQS) regression model were used to investigate the association between six air pollutants co-exposure and semen quality. Sensitivity analysis regarding at the normal semen quality group was also conducted. Semen samples were randomly selected from 200 participants to detect the genomic 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5-hmC) levels in sperm. In the total population, PM10, PM2.5, SO2, and NO2 were negatively associated with sperm total motility (PM10: β = -2.67, P = 0.009; PM2.5: β = -2.86, P = 0.004; SO2: β = -2.32, P = 0.011; NO2: β = -2.21, P = 0.012). Results of the normal semen quality group were consistent with those from the whole population. WQS regression results indicated significant decreasing sperm total motility after the co-exposure of the six air pollutants (β = -1.64, P = 0.003) in whole participants. Wherein, PM10 accounted for largest proportion (43.4%). The 5-hmC level was positively associated with PM10 exposure (β = 0.002, P < 0.001). Long-term exposure to PM10, PM2.5, SO2, and NO2, as well as co-exposure to six air pollutants, reduced semen quality in fertile men. As the most significant contributor of air pollutant, PM10 exposure decreased sperm DNA methylation.
Collapse
Affiliation(s)
- Yuting Cheng
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yiwen Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mei Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yijie Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peihao Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jinhui Li
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Feng Pan
- Department of Urology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
López-Botella A, Velasco I, Acién M, Sáez-Espinosa P, Todolí-Torró JL, Sánchez-Romero R, Gómez-Torres MJ. Impact of Heavy Metals on Human Male Fertility-An Overview. Antioxidants (Basel) 2021; 10:antiox10091473. [PMID: 34573104 PMCID: PMC8468047 DOI: 10.3390/antiox10091473] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Heavy metals are endocrine disruptors which interfere with processes mediated by endogenous hormones of the organism, negatively affecting endocrine functions. Some studies have correlated heavy metal exposure with male infertility. However, the number of studies conducted on humans are limited. Therefore, the aim of this study is to summarize the current knowledge on how heavy metals influence human male fertility. Hence, three distinct databases were consulted—PubMed, Scopus and Web of Science—using single keywords and combinations of them. The total number of identified articles was 636. Nevertheless, by using the inclusion and exclusion criteria, 144 articles were finally included in this work. Results display that the development of adequate instruments for heavy metal assessment may play an important function in human male fertility diagnosis and treatment. Furthermore, clinical trials could be useful to confirm the role of heavy metals in human male fertility diagnosis. Overall, further research is required to fully understand the molecular and cellular basis of the influence of environmental and occupational exposure to heavy metals on human male infertility and reproductive outcomes.
Collapse
Affiliation(s)
- Andrea López-Botella
- Service of Obstetrics and Gynecology, Unit of Human Reproduction, FISABIO—San Juan University Hospital, Carretera Alicante-Valencia s/n, 03550 San Juan de Alicante, Spain; (A.L.-B.); (I.V.); (M.A.)
- Biotechnology Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Irene Velasco
- Service of Obstetrics and Gynecology, Unit of Human Reproduction, FISABIO—San Juan University Hospital, Carretera Alicante-Valencia s/n, 03550 San Juan de Alicante, Spain; (A.L.-B.); (I.V.); (M.A.)
- Biotechnology Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Maribel Acién
- Service of Obstetrics and Gynecology, Unit of Human Reproduction, FISABIO—San Juan University Hospital, Carretera Alicante-Valencia s/n, 03550 San Juan de Alicante, Spain; (A.L.-B.); (I.V.); (M.A.)
- Gynecology Division, Faculty of Medicine, Miguel Hernández University, Carretera Alicante-Valencia s/n, 03550 San Juan de Alicante, Spain
| | - Paula Sáez-Espinosa
- Biotechnology Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - José-Luis Todolí-Torró
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.-L.T.-T.); (R.S.-R.)
| | - Raquel Sánchez-Romero
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.-L.T.-T.); (R.S.-R.)
| | - María José Gómez-Torres
- Biotechnology Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
- Correspondence:
| |
Collapse
|