1
|
Huang Y, Liu B, Li J, Chi Y, Zhai H, Liu L, Chi Y, Wang R, Yu H, Yuan T, Ji M. Laccase-loaded CaCO 3 sustained-release microspheres modified SBES anode for enhance performance in the remediation of soil contaminated with phenanthrene and pyrene. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136106. [PMID: 39471620 DOI: 10.1016/j.jhazmat.2024.136106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
This study aimed to enhance the efficiency of SBES in remediating polycyclic aromatic hydrocarbon (PAH)-contaminated soils by modifying the anode with laccase. The experiment involved four SBES anodes: a carbon nanotube-modified anode (CNT), a free laccase-modified anode (Lac), a gelatin-encapsulated laccase-modified anode (Lac-Gel), and a CaCO3 sustained-release microsphere-loaded laccase-modified (CaCO3-SMs@Laccase) anode (Lac-SMs). The CaCO3-SMs@Laccase notably extended the active period of laccase, with laccase activity in the Lac-SMs measured at 1.646 U/g after 16 days, which was significantly higher than the 0.813 U/g observed in the Lac-Gel group and the 0.206 U/g in the Lac group. The superior electricity generation and degradation efficiency observed in the Lac-SMs group were due to the sustained enzymatic activity provided by the CaCO3-SMs@Laccase. The prevention of anode acidification through CaCO3 decomposition, and promote the forward progress of electrochemical reactions. The phenanthrene (Phe) and pyrene (Pyr) removal efficiency in the soil of the Lac-SMs reached 90.78 % and 84.72 %, surpassing those of the Lac-Gel (80.36 % and 79.14 %), Lac (79.38 % and 69.31 %), and CNT (63.22 % and 56.98 %). The degradation pathway from Pyr to Phe was possible started with hydroxylation. In addition, the laccase also transformed the predominant microbial communities and metabolism pathways.
Collapse
Affiliation(s)
- Yinghao Huang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Boyue Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Jie Li
- College of Light Industry Science and Engineering,Tianjin University of science and Technology, Tianjin 300457, China
| | - Yongzhi Chi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yiyang Chi
- International School of Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Ruiyao Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Haobo Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Tengfei Yuan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Cao X, Li X, Wang H, Zhang S, Zhang H, Sakamaki T, Li X. The promotion of the polycyclic aromatic hydrocarbons degradation mechanism by humic acid as electron mediator in a sediment microbial electrochemical system. BIORESOURCE TECHNOLOGY 2024; 404:130909. [PMID: 38815696 DOI: 10.1016/j.biortech.2024.130909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
To enhance the removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) in sediments and to elucidate the mechanisms by which microbial electrochemical action aids in the degradation of PAHs, humic acid was used as an electron mediator in the microbial electrochemical system in this study. The results revealed that the addition of humic acids led to increases in the removal efficiencies of naphthalene, phenanthrene, and pyrene by 45.91%, 97.83%, and 85.56%, respectively, in areas remote from the anode, when compared to the control group. The investigation into the microbial community structure and functional attributes showed that the presence of humic acid did not significantly modify the microbial community composition or its functional expression at the anode. However, an examination of humic acid transformations demonstrated that humic acid extended the electron transfer range in sediment via the redox reactions of quinone and semiquinone groups, thereby facilitating the PAHs degradation within the sediment.
Collapse
Affiliation(s)
- Xian Cao
- College of Energy and Environment, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xinyu Li
- College of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Hui Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Haochi Zhang
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210036, China
| | - Takashi Sakamaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Aramaki 6-6-06, Sendai 980-8579, Japan
| | - Xianning Li
- College of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
3
|
Li C, Mei T, Song TS, Xie J. Removal of petroleum hydrocarbon-contaminated soil using a solid-phase microbial fuel cell with a 3D corn stem carbon electrode modified with carbon nanotubes. Bioprocess Biosyst Eng 2022; 45:1137-1147. [PMID: 35624323 DOI: 10.1007/s00449-022-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/15/2022] [Indexed: 11/02/2022]
Abstract
Solid-phase microbial fuel cell (SMFC) can accelerate the removal of organic pollutants through the electrons transfer between microorganisms and anodes in the process of generating electricity. Thus, the characteristics of the anode material will affect the performance of SMFCs. In this study, corn stem (CS) is first calcined into a 3D macroporous electrode, and then modified with carbon nanotubes (CNTs) through electrochemical deposition method. Scanning electron microscope analysis showed the CS/CNT anode could increase the contact area on the surface. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry analysis indicated the electrochemical double-layer capacitance of the CS/CNT anode increased while its internal resistance decreased significantly. These characteristics are crucial for increasing bacterial adhesion capability and electron transfer rate. The maximum output voltage of the SMFC with CS/CNT anode was 158.42 mV, and the removal rate of petroleum hydrocarbon (PH) reached 42.17%, 2.72 times that of unmodified CS. In conclusion, CNT-modified CS is conducive to improve electron transfer rate and microbial attachment, enhancing the removal efficiency of PH in soil.
Collapse
Affiliation(s)
- Chenrong Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Ting Mei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Tian-Shun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Jingjing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, People's Republic of China.
| |
Collapse
|
4
|
Li S, Deng Y, Lian S, Dai C, Ma Q, Qu Y. Succession of diversity, functions, and interactions of the fungal community in activated sludge under aromatic hydrocarbon stress. ENVIRONMENTAL RESEARCH 2022; 204:112143. [PMID: 34600881 DOI: 10.1016/j.envres.2021.112143] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Although fungi are regarded as the important degraders of aromatic hydrocarbons (AHs) in various environments, the dynamic succession and interaction of their community under aromatic hydrocarbon stress has been rarely reported. In this study, we systematically investigated the responses of the fungal community and the associations among fungal species when facing the continuous stress of two typical AHs, benzene and naphthalene. Using high-throughput sequencing technology, we demonstrated that fungal diversity displayed a significant downward trend during six weeks of continuous aromatic hydrocarbon treatment. Community succession was observed during the operational period, and the relative abundance of some typical degraders, such as Exophiala sp. and Candida sp., increased during the later period of operation. Meanwhile, by predicting the functions of the fungal community through PICRUSt2, we found that some relevant enzymes, such as peroxidase, dioxygenase, and monooxygenase, may play an important role in the degradation process and maintaining overall community multifunctionality. Furthermore, the measurement of modified normalized stochasticity ratio (MST) indicated that continuous aromatic hydrocarbon stress resulted in a stronger deterministic process in community assembly over time, suggesting environmental selection dominated succession of the fungal community in activated sludge. Finally, molecular ecological network analysis (MENA) demonstrated that, the cooperative behaviors among members, the network keystone genera related to biodegradation, such as Exophiala sp. and Haglerozyma sp., and a well-organized topological structure, together, maintained the structural stability of the fungal community under AH stress. Our study provides new insights for understanding the stability of fungal communities during the degradation of contaminants in activated sludge.
Collapse
Affiliation(s)
- Shuzhen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|