1
|
Costa LRDC, Féris LA. Use of ozonation technology to combat viruses and bacteria in aquatic environments: problems and application perspectives for SARS-CoV-2. ENVIRONMENTAL TECHNOLOGY 2023; 44:2490-2502. [PMID: 35078388 DOI: 10.1080/09593330.2022.2034981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/17/2022] [Indexed: 06/08/2023]
Abstract
COVID-19 is a global health threat with a large number of confirmed cases and deaths worldwide. Person-to-person transmission through respiratory droplets and contact with aerosol-infected surfaces are the main ways in which the virus spreads. However, according to the updated literature, the new coronavirus (SARS-CoV-2) has also been detected in aqueous matrices, with the main route of transmission being feces and masks from patients diagnosed with the disease. Given the emergence of public health and environmental protection from the presence of lethal viruses and bacteria, this review article aims to report the major challenges associated with the application of ozonation in water contaminated with viruses and bacteria, in order to clarify whether these communities can survive or infect after the disinfection process and if it is efficient. Available data suggest that ozonation is able to increase the inactivation effect of microorganisms by about 50% in the logarithmic range, reducing infectivity. In addition, the evidence-based knowledge reported in this article is useful to support water and sanitation safety planning and to protect human health from exposure to cited contaminants through water.
Collapse
Affiliation(s)
| | - Liliana Amaral Féris
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Noman EA, Al-Gheethi A, Al-Sahari M, Saphira Radin Mohamed RM, Crane R, Aziz NAA, Govarthanan M. Challenges and opportunities in the application of bioinspired engineered nanomaterials for the recovery of metal ions from mining industry wastewater. CHEMOSPHERE 2022; 308:136165. [PMID: 36037954 DOI: 10.1016/j.chemosphere.2022.136165] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Heavy-metal-bearing wastewater is among the most formidable challenges the mining industry currently faces in maintaining its social license to operate. Amongst the technologies available for metal ion adsorption, bioinspired engineering nanomaterials have emerged as one which exhibits great promise. However, current processes used for the preparation of adsorbents (including nanoscale activated carbon and biochar) represent a source of adverse impacts on the environment. In contrast, the application of biogenic-nanoparticles, i.e., those derived from processes catalysed by microbiota, has received significant attention in the last few years. Coupled with this, the use of naturally occurring reagents is of major importance for the sustainability of this emerging industry. This paper analyses the life cycle assessment (LCA) of the synthesis of adsorbents derived from agricultural wastes. Moreover, rather than simply recovering the ecotoxic metals from wastewater, the potential to valorise dissolved metals into high-value metallic nanoparticle products is discussed. LCA analysis revealed that the adsorbent had some adverse impact on the environment. The agricultural wastes contributed 27.86% to global warming, 54.64% to ozone formation, 33.06% to fine particles, and 98.24% to marine eutrophication. Mining wastewater is an important, and largely currently unexploited, source of metal value. However, the often-low concentration of such metals dictates that their conversion into high-value products (such as engineered nanoparticles) is an important new research frontier. Within this the use of biosynthesis methods has emerged as having great potential due to a range of beneficial attributes, including low cost, high efficacy and/or environmental compatibility.
Collapse
Affiliation(s)
- Efaq Ali Noman
- Department of Civil Engineering, Faculty of Civil Engineering and Build Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, 86400, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, 86400, Malaysia
| | - Adel Al-Gheethi
- Department of Civil Engineering, Faculty of Civil Engineering and Build Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, 86400, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, 86400, Malaysia; Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - Mohammed Al-Sahari
- Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, 86400, Malaysia
| | - Radin Maya Saphira Radin Mohamed
- Department of Civil Engineering, Faculty of Civil Engineering and Build Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, 86400, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, 86400, Malaysia.
| | - Rich Crane
- Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Nur Adila Ab Aziz
- Department of Civil Engineering, Faculty of Civil Engineering and Build Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, 86400, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, 86400, Malaysia
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| |
Collapse
|
3
|
Wang K, Paszkiewicz O, Vincent M, Henkiel P, Kowalski D, Kowalska E, Markowska-Szczupak A. Evaluation of Antifungal Properties of Titania P25. MICROMACHINES 2022; 13:1851. [PMID: 36363871 PMCID: PMC9693362 DOI: 10.3390/mi13111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Commercial titania photocatalyst—P25 was chosen for an antifungal property examination due to it exhibiting one of the highest photocatalytic activities among titania photocatalysts. Titania P25 was homogenized first (HomoP25) and then annealed at different temperatures. Additionally, HomoP25 was modified with 0.5 wt% or 2.0 wt% of platinum by a photodeposition method. The obtained samples were characterized by diffuse-reflectance spectroscopy (DRS), X-ray photoabsorption spectroscopy (XPS), X-ray diffraction (XRD) and Raman spectroscopy. Moreover, photocatalytic activity was tested for methanol dehydrogenation under UV/vis irradiation. The spore-destroying effect of photocatalysts was investigated against two mold fungal species, i.e., Aspergillus fumigatus and Aspergillus niger. Both the mycelium growth and API ZYM (estimation of enzymatic activity) tests were applied for the assessment of antifungal effect. It was found that annealing caused a change of surface properties of the titania samples, i.e., an increase in the noncrystalline part, a growth of particles and enhanced oxygen adsorption on its surface, which resulted in an increase in both the hydrogen evolution rate and the antifungal effect. Titania samples annealed at 300−500 °C were highly active during 60-min UV/vis irradiation, inhibiting the germination of both fungal spores, whereas titania modification with platinum (0.5 and 2.0 wt%) had negligible effect, despite being highly active for hydrogen evolution. The control experiments revealed the lack of titania activity in the dark, as well as high resistance of fungi for applied UV/vis irradiation in the absence of photocatalysts. Moreover, the complete inhibition of 19 hydrolases, secreted by both tested fungi, was noted under UV/vis irradiation on the annealed P25 sample. It is proposed that titania photocatalysts of large particle sizes (>150 nm) and enriched surface with oxygen might efficiently destroy fungal structures under mild irradiation conditions and, thus, be highly promising as covering materials for daily products.
Collapse
Affiliation(s)
- Kunlei Wang
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Mewin Vincent
- Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Patrycja Henkiel
- Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Damian Kowalski
- Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| |
Collapse
|
4
|
Jiang Z, Gong Z, Song W, Wu P, Deng C, Chen Q, Yan T. A promising hydroxyapatite whisker with long-term and high-efficiency antibacterial performance and its potential application in implant. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|