1
|
Doghmane NEA, Chettibi S, Doghmane M, Othmane DB, Touam T. Comparative investigations of structural, electronic, optical, and thermoelectric properties of pure and 2 at. % Al-doped ZnO. J Mol Model 2023; 29:343. [PMID: 37847327 DOI: 10.1007/s00894-023-05750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
CONTEXT We comparatively investigate the properties of pure ZnO and 2 at. % Al doping concentration of ZnO, AZO, as potential candidates for specific applications. METHODS Calculations were carried out, using Wien2k package, to deduce structural, electronic, optical thermoelectric, and properties of both ZnO and AZO materials via the combination of GGA and mBJ approximations. RESULTS It is shown that Al doping of ZnO (AZO) improves its optical properties; the deduced direct fundamental gap is enhanced due to the Burstein-Moss effect. Moreover, the dielectric function, at lower energies, confirms the existence of an extra strong fluctuation in the dispersive real part ɛ1(ω) and a high peak for absorptive imaginary parts ɛ2(ω) which are due to a variation in specific molecular bonding and the transition between the occupied and the non-occupied states. The critical point, observed at 2.81 eV for pure ZnO, is shifted to 3.3 eV in 2 at. % AZO, confirming a larger optical band gap. The reflectivity values slightly decreased for 2% AZO. The investigation of thermoelectric parameters as a function of chemical potential at different temperatures ranging from 300 to 900°C showed that these structures can be considered for good thermoelectric devices with (i) high absolute values of Seebeck coefficient: ׀SZnO׀ = 1.16 mV/K and ׀SAZO׀ = 0.746 mV/K, (ii) no effect of temperature on electrical conductivity but a strong effect on thermal conductivity, (iii) a high value approaching unity for the figure of merit. Hence, these properties and their improvements, introduced by Al doping of ZnO, lead specific and more uses in optoelectronics, energy, and piezoelectric applications.
Collapse
Affiliation(s)
- Nozha El Ahlem Doghmane
- Laboratoire de Physique des Matériaux, L2PM, Département Sciences de la Matière, Faculté MISM, Université 08 Mai 1945, DZ-24000, Guelma, Algeria
| | - Sabah Chettibi
- Laboratoire de Physique des Matériaux, L2PM, Département Sciences de la Matière, Faculté MISM, Université 08 Mai 1945, DZ-24000, Guelma, Algeria
| | - Malika Doghmane
- Laboratoire de Physique des Matériaux, L2PM, Département Sciences de la Matière, Faculté MISM, Université 08 Mai 1945, DZ-24000, Guelma, Algeria
| | - Djemâa Ben Othmane
- Laboratoire des Semi-conducteurs, Département de Physique, Faculté des Sciences, Université Badji-Mokhtar-Annaba, B.P 12, DZ-23000, Annaba, Algeria
| | - Tahar Touam
- Laboratoire des Semi-conducteurs, Département de Physique, Faculté des Sciences, Université Badji-Mokhtar-Annaba, B.P 12, DZ-23000, Annaba, Algeria.
| |
Collapse
|
2
|
Li X, Liu J, Jiang G, Lin X, Wang J, Li Z. Self-supported CsPbBr 3/Ti 3C 2T x MXene aerogels towards efficient photocatalytic CO 2 reduction. J Colloid Interface Sci 2023; 643:174-182. [PMID: 37058892 DOI: 10.1016/j.jcis.2023.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Aerogels, especially MXene aerogels, are an ideal multifunctional platform for developing efficient photocatalysts for CO2 reduction because they are featured by abundant catalytic sites, high electrical conductivity, high gas absorption ability and self-supported structure. However, the pristine MXene aerogel has almost no ability to utilize light, which requires additional photosensitizers to assist it in achieving efficient light harvesting. Herein, we immobilized colloidal CsPbBr3 nanocrystals (NCs) onto the self-supported Ti3C2Tx (where Tx represents surface terminations such as fluorine, oxygen, and hydroxyl groups) MXene aerogels for photocatalytic CO2 reduction. The resultant CsPbBr3/Ti3C2Tx MXene aerogels exhibit a remarkable photocatalytic activity toward CO2 reduction with total electron consumption rate of 112.6 μmol g-1h-1, which is 6.6-fold higher than that of the pristine CsPbBr3 NC powders. The improvement of the photocatalytic performance is presumably attributed to the strong light absorption, effective charge separation and CO2 adsorption in the CsPbBr3/Ti3C2Tx MXene aerogels. This work presents an effective perovskite-based photocatalyst in aerogel form and opens a new avenue for their solar-to-fuel conversions.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China
| | - Jiale Liu
- Zhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China; Zhejiang Provincial Key Laboratory of Solid State Optoelectronic Devicces, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China
| | - Guocan Jiang
- Zhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China; Zhejiang Provincial Key Laboratory of Solid State Optoelectronic Devicces, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China.
| | - Xinyu Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China
| | - Jin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China; Zhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China.
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China; Zhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China.
| |
Collapse
|
3
|
Shaheen S, Khan RRM, Ahmad A, Luque R, Pervaiz M, Saeed Z, Adnan A. Investigation on the role of graphene-based composites for in photocatalytic degradation of phenol-based compounds in wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73718-73740. [PMID: 36087178 DOI: 10.1007/s11356-022-21975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The ineptitude of conventional water management systems to eradicate noxious compounds leads to the development of advanced treatment systems. The disclosure of graphene-based photocatalytic degradation for the eradication of phenolic compounds has become the "apple of the eye" for many researchers. This review article describes the advanced research progress during the period of 2008-2021 in graphene-based nanocomposites and discusses their different synthesis methods. We will also talk about the applications of nanocomposite in water splitting, dye degradation, solar fuel generations, and organic transformations. Multicomponent heterojunction structure, co-catalyst cohering, and noble metal coupling have been inspected to enhance the photocatalytic performance of graphene-based composite by increasing charge separation and stability. The photocatalytic system's remarkable stability has been described in terms of facile recyclability. The adsorption ability of phenolic compounds has been addressed in the form of Langmuir and Freundlich adsorption isotherm with various factors (pH, concentration, the intensity of light, the effect of catalyst, the effect of time, etc.). The purpose of this review is to survey mechanisms and processes that enlist graphene-based composite in terms of efficacy and dose of catalyst required to attain 99% degradation. Nanoparticles may cause toxicity and a pretext for their toxicity has been mentioned. Finally, it is anticipated that this article could allocate consequential knowledge to fabricating graphene-based composites that are in crucial demand of being discussed in future research.
Collapse
Affiliation(s)
- Shumila Shaheen
- Department of Chemistry, Government College University, Lahore, Pakistan
| | | | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Ctra Nnal IV-A, Edificio Marie Curie (C-3)Km 396, 14014, Cordoba, Spain
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Ctra Nnal IV-A, Edificio Marie Curie (C-3)Km 396, 14014, Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), Moscow, 6 Miklukho Maklaya str., 117198, Russian Federation
| | - Muhammad Pervaiz
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Zohaib Saeed
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Ahmad Adnan
- Department of Chemistry, Government College University, Lahore, Pakistan
| |
Collapse
|
4
|
Enhanced sunlight-absorption of Fe2O3 covered by PANI for the photodegradation of organic pollutants and antimicrobial inactivation. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Lv X, Min X, Feng L, Lin X, Ni Y. A novel NiMn2O4@NiMn2S4 core-shell nanoflower@nanosheet as a high-performance electrode material for battery-type capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
The Oxygen Vacancy Defect of ZnO/NiO Nanomaterials Improves Photocatalytic Performance and Ammonia Sensing Performance. NANOMATERIALS 2022; 12:nano12030433. [PMID: 35159778 PMCID: PMC8838695 DOI: 10.3390/nano12030433] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
In this paper, ZnO/NiO composites rich in oxygen vacancies are prepared by the solvothermal method and reduction method. In the test, through the use of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscope (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and electron paramagnetic resonance (EPR), we effectively prove the existence of phase, morphology and oxygen vacancies in the material. Through the photocatalysis test and gas sensitivity test, it is found that 10% Ni doped OZN-10 has the best photocatalytic activity and gas sensitivity characteristics. The degradation rate of methylene blue (MB) was 98%. The gas sensitivity test shows that OZN-10 has good selectivity, good response performance (3000 ppm, 27,887%) and excellent response recovery time (response time: 50 s, recovery time: 5–7 s) for saturated NH3 gas at standard atmospheric pressure (101.325 KPa) and room temperature (25 °C). The synergistic effect of oxygen vacancy as the center of a trap and p–n heterojunction forming an electric potential field at the interface is explained, and the mechanism of improving photocatalysis and gas sensitivity is analyzed. This work will provide an innovative vision for dual-performance oxygen vacancy modification of heterojunctions through photocatalysis.
Collapse
|