1
|
Li Y, Liu S, Feng F, Li Y, Han Y, Tong X, Gao X. Preparation and Characterization of Graphene Oxide/Carbon Nanotube/Polyaniline Composite and Conductive and Anticorrosive Properties of Its Waterborne Epoxy Composite Coatings. Polymers (Basel) 2024; 16:2641. [PMID: 39339105 PMCID: PMC11435755 DOI: 10.3390/polym16182641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The organic coating on the surface is common and the most effective method to prevent metal materials from corrosion. However, the corrosive medium can penetrate the metal surface via micropores, and electrons cannot transfer in the pure resin coatings. In this paper, a new type of anticorrosive and electrically conductive composite coating filled with graphene oxide/carbon nanotube/polyaniline (GO/CNT/PANI) nanocomposites was successfully prepared by in situ polymerization of aniline (AN) on the surface of GO and CNT and using waterborne epoxy resin (WEP) as film-forming material. The structure and morphology of the composite were characterized using a series of characterization methods. The composite coatings were comparatively examined through resistivity, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and salt spray tests. The results show that the GO/CNT/PANI/WEP composite coating exhibits excellent corrosion resistance for metal substrates and good conductivity when the mass fraction of GO/CNT/PANI is 3.5%. It exhibits a lower corrosion current density of 4.53 × 10-8 A·cm-2 and a higher electrochemical impedance of 3.84 × 106 Ω·cm2, while only slight corrosion occurred after 480 h in the salt spray test. The resistivity of composite coating is as low as 2.3 × 104 Ω·cm. The composite coating possesses anticorrosive and electrically conductive properties based on the synergistic effect of nanofillers and expands the application scope in grounding grids and oil storage tank protection fields.
Collapse
Affiliation(s)
- Yufeng Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Shibo Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Feng Feng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Yahui Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Xinyang Tong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Xiaohui Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| |
Collapse
|
2
|
Jin Z, Peng F, Du Q, Liang D, Zhao Y. RuZn NPs with electroactivity and oxidase-like property for dual-mode anti-cancer drug monitoring. Talanta 2024; 274:126075. [PMID: 38604042 DOI: 10.1016/j.talanta.2024.126075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/08/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
6-mercaptopurine (6-MP) as the effective anti-cancer drug was used for the treatment of Crohn's disease and acute lymphoblastic leukaemia, but the response to maintenance therapy was variable with individual differences. In order to control the dosage and decrease the side effects of 6-MP, a sensitive and stable assay was urgently needed for 6-MP monitoring. Herein, RuZn NPs with electrochemical oxidation property and oxidase-like activity was proposed for dual-mode 6-MP monitoring. Burr-like RuZn NPs were prepared and explored to not only exhibit an electrochemical oxidation signal at 0.78 V, but also displayed excellent oxidase-like performances. RuZn NPs were utilized for the dual-mode monitoring of 6-MP, attributing to the formation of Ru-SH covalent bonding. The colorimetric method showed good linearity from 10 μM to 5 mM with the limit of detection (LOD) of 300 nM, while the electrochemical method provided a higher sensitivity with the LOD of 37 nM in range from 100 nM to 200 μM. This work provided a new way for the fabrication of dual-functional nanotags with electroactivity and oxidase-like property, and opened a dual-mode approach for the 6-MP detection applications with complementary and satisfactory results.
Collapse
Affiliation(s)
- Zhao Jin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fang Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiaodan Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Dan Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
3
|
Huang Y, Guan Z, Xia D. Effective remediation of leachate concentrate by peroxymonosulfate in a catalytic ceramic membrane filtration process: Performance and mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:117-126. [PMID: 37913689 DOI: 10.1016/j.wasman.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/29/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Membrane concentrated landfill leachate has been characterized by complex component and degradation resistant. In this work, a new catalytic ceramic membrane (CuCM) was developed by in-situ integrating copper oxide in the membrane and used in combination with peroxymonosulfate (PMS) for leachate concentrate treatment. The performance and key factors of the CuCM/PMS system were systematically studied. Results showed that the CuCM/PMS system experienced promising efficiency in the pH range of 3 ∼ 11. The highest COD, TOC, UV254 and Color removal efficiency achieved by the CuCM-3/PMS system under the conditions of pH = 7.0 and CPMS = 10 mM, which reached up to 63.4%, 50.5%, 75.1% and 90.2%, respectively. The possible mechanism of leachate remediation was proposed and non-free radicals (Cu(Ⅲ), 1O2) played an important role in the CuCM/PMS system for leachate remediation. The fluorescence spectrum and GC-MS analysis showed that the refractory organics with a high molecular weight in the leachate concentrate were mostly oxidized into small molecules, which also alleviated the membrane fouling. In addition, the slight decrease in COD (7.4%) and TOC (9.7%) after 6 cycles revealed the good catalytic stability and reusability of CuCM-3/PMS. This work provides a feasible strategy for leachate concentrate remediation via a nonradical oxidation process.
Collapse
Affiliation(s)
- Yangbo Huang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China.
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Dongsheng Xia
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|
4
|
Xiao J, Dong H, Li Y, Li L, Chu D, Xiang S, Hou X, Dong Q, Xiao S, Jin Z, Wang J. Graphene shell-encapsulated copper-based nanoparticles (G@Cu-NPs) effectively activate peracetic acid for elimination of sulfamethazine in water under neutral condition. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129895. [PMID: 36087535 DOI: 10.1016/j.jhazmat.2022.129895] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In this study, a graphene shell-encapsulated copper-based nanoparticles (G@Cu-NPs) was prepared and employed for peracetic acid (PAA) activation. The characterization of G@Cu-NPs confirmed that the as-prepared material was composed of Cu0 and Cu2O inside and encapsulated by a graphene shell. Experimental results suggested that the synthesized G@Cu-NPs could activate PAA to generate free radicals for efficiently removing sulfamethazine (SMT) under neutral condition. The formation of graphene shells could strongly facilitated electron transfer from the core to the surface. Radical quenching experiments and electron spin resonance (ESR) analysis confirmed that organic radicals (R-O•) and hydroxyl radicals (•OH) were generated in the G@Cu-NPs/PAA system, and R-O• (including CH3CO3• and CH3CO2•) was the main contributor to the elimination of SMT. The possible SMT degradation pathways and mechanisms were proposed, and the toxicity of SMT and its intermediates was predicted with the quantitative structure-activity relationship (QSAR) analysis. Besides, the effects of some key parameters, common anions, and humic acid (HA) on the removal of SMT in the G@Cu-NPs/PAA system were also investigated. Finally, the applicability of G@Cu-NPs/PAA system was explored, showing that the G@Cu-NPs/PAA system possessed satisfactory adaptability to treat different water bodies with admirable reusability and stability.
Collapse
Affiliation(s)
- Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Dongdong Chu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuxue Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiuzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qixia Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuangjie Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Zilan Jin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
5
|
Kou L, Fan Q, Yang Y, Duan X, Jiang K, Wang J. Polyaniline@g-C 3N 4 derived N-rich porous carbon for selective degradation of phenolic pollutants via peroxymonosulfate activation: An electron transfer mechanism. CHEMOSPHERE 2023; 311:137022. [PMID: 36330981 DOI: 10.1016/j.chemosphere.2022.137022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
N-doped carbons have attracted extensive attention as catalysts for peroxymonosulfate (PMS) activation towards environmental remediation. However, synthesis of N-rich carbocatalysts is challenging and PMS activation mechanism is still unclear. Herein, novel N-rich porous carbocatalysts (C-PxCN-T) were synthesized by carbonization of polyaniline nanorods coated g-C3N4. C-P50CN-900 (polyaniline content 50%) calcined at 900 °C had high surface area (358 m2/g), product yield (27.1%) and N content (12.27 at%). It showed superior performance in activating PMS to degrade and mineralize various phenolic pollutants in a wide pH range (2-11) and with the co-existence of water constituents. A positive correlation was observed between phenol oxidation rates and contents of CO, C-C/CC and graphitic N, which served as active sites to facilitate adsorption of pollutants and PMS on C-P50CN-900 and subsequent electron-transfer from pollutants to PMS. Overall, this study provides new insights into rational design of N-doped carbocatalysts and elucidation of electron transfer pathway in PMS activation.
Collapse
Affiliation(s)
- Lidong Kou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China; Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan, 450002, PR China
| | - Qingfeng Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yuhong Yang
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, PR China
| | - Xianying Duan
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan, 450002, PR China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Jing Wang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan, 450002, PR China.
| |
Collapse
|
6
|
Gan Y, Zhu K, Xia W, Zhu S, Tong Z, Chen W, Wang Y, Lin B. Strongly coupled Fe/N co-doped graphitic carbon nanosheets/carbon nanotubes for rapid degradation of organic pollutants via peroxymonosulfate activation: Performance, mechanism and degradation pathways. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
S-scheme 2D/2D FeTiO3/g-C3N4 hybrid architectures as visible-light-driven photo-Fenton catalysts for tetracycline hydrochloride degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Iron oxide clusters on g-C3N4 promote the electron–hole separation in photo-Fenton reaction for efficient degradation of wastewater. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Chen W, He D, Huang J, Zhu K, Lei L, He H, Ai Y. One-step synthesis of novel Fe/Fe3O4 embedded in N-doped graphite-like carbon nanosheets with the entangled CNTs to activate peroxymonosulfate for bisphenol a degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
P/N co-doped carbon sheet for peroxymonosulfate activation: Edge sites enhanced adsorption and subsequent electron transfer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|