1
|
Huang X, Steinmetz J, Marsh EK, Aravkin AY, Ashbaugh C, Murray CJL, Yang F, Ji JS, Zheng P, Sorensen RJD, Wozniak S, Hay SI, McLaughlin SA, Garcia V, Brauer M, Burkart K. A systematic review with a Burden of Proof meta-analysis of health effects of long-term ambient fine particulate matter (PM 2.5) exposure on dementia. NATURE AGING 2025; 5:897-908. [PMID: 40119171 DOI: 10.1038/s43587-025-00844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
Previous studies have indicated increased dementia risk associated with fine particulate matter (PM2.5) exposure; however, the findings are inconsistent. In this systematic review, we assessed the association between long-term PM2.5 exposure and dementia outcomes using the Burden of Proof meta-analytic framework, which relaxes log-linear assumptions to better characterize relative risk functions and quantify unexplained between-study heterogeneity (PROSPERO, ID CRD42023421869). Here we report a meta-analysis of 28 longitudinal cohort studies published up to June 2023 that investigated long-term PM2.5 exposure and dementia outcomes. We derived risk-outcome scores (ROSs), highly conservative measures of effect size and evidence strength, mapped onto a 1-5-star rating from 'weak and/or inconsistent evidence' to 'very strong and/or consistent evidence'. We identified a significant nonlinear relationship between PM2.5 exposure and dementia, with a minimum 14% increased risk averaged across PM2.5 levels between 4.5 and 26.9 µg m-3 (the 15th to 85th percentile exposure range across included studies), relative to a reference of 2.0 µg m-3 (n = 49, ROS = 0.13, two stars). We found a significant association of PM2.5 with Alzheimer's disease (n = 12, ROS = 0.32, three stars) but not with vascular dementia. Our findings highlight the potential impact of air pollution on brain aging.
Collapse
Affiliation(s)
- Xinmei Huang
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jaimie Steinmetz
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Elizabeth K Marsh
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Aleksandr Y Aravkin
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Charlie Ashbaugh
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Christopher J L Murray
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Fanghan Yang
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - John S Ji
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Peng Zheng
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Reed J D Sorensen
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Sarah Wozniak
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Susan A McLaughlin
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Vanessa Garcia
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Michael Brauer
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katrin Burkart
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Abdala SA, Khomsi K, Houdou A, El Marouani I, El Badisy I, Najmi H, Obtel M, Belyamani L, Ibrahimi A, Khalis M. Emission reduction strategies and health: a systematic review on the tools and methods to assess co-benefits. BMJ Open 2024; 14:e083214. [PMID: 39653556 PMCID: PMC11628954 DOI: 10.1136/bmjopen-2023-083214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/16/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE The objective of this study is to review the current literature on the health co-benefits of emission reduction strategies and the methods and tools available to assess them. DESIGN Systematic review conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. DATA SOURCES PubMed, Scopus, Web of Science, ScienceDirect and GreenFILE were searched from January of 2017 to March of 2023. ELIGIBILITY CRITERIA We included original, peer-reviewed journal articles that described emission (ambient air pollutant and greenhouse gases) reduction strategies and assessed their health co-benefits. DATA EXTRACTION AND SYNTHESIS Two independent reviewers employed standardised methods to search, screen and code the included studies, documenting their findings in an Excel spreadsheet. RESULTS From 6687 articles, 82 were included. Most studies show that emissions reduction strategies improve air quality, reducing mortality and morbidity. Health risk assessment and health impact assessment are common, though procedures may cause confusion. About 33% used established models like the integrated exposure-response and global exposure mortality model. Out of all studies, 16% of them used Environmental Benefits Mapping and Analysis Program-Community Edition. Only 17.8% carried out cost-benefit analyses, but these show economic worth in investing in emission reduction strategies. CONCLUSIONS Emission reduction strategies significantly enhance human health, with potential co-benefits offsetting intervention costs, which can be an incentive for action in low and middle-income countries. This review emphasises investing in cost-benefit analyses and research, particularly in regions with limited studies on emission reduction and health co-benefits. It provides decision-makers insights into selecting assessment methods and underscores the ongoing need for model and tool evaluation. PROSPERO REGISTRATION NUMBER CRD42022332480.
Collapse
Affiliation(s)
- Sammila Andrade Abdala
- Department of Public Health and Clinical Research, Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI International School of Public Health, Mohammed VI University of Sciences and Health, Casablanca, Casablanca-Settat, Morocco
| | - Kenza Khomsi
- General Directorate of Meteorology, Casablanca, Morocco
| | - Anass Houdou
- Department of Public Health and Clinical Research, Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI International School of Public Health, Mohammed VI University of Sciences and Health, Casablanca, Casablanca-Settat, Morocco
| | - Ihssane El Marouani
- Department of Public Health and Clinical Research, Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI International School of Public Health, Mohammed VI University of Sciences and Health, Casablanca, Casablanca-Settat, Morocco
| | - Imad El Badisy
- Department of Public Health and Clinical Research, Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Sciences Économiques & Sociales de la Santé & Traitement de L’information Médicale (SESSTIM), Inserm UMR912, Marseille, France
| | - Houda Najmi
- General Directorate of Meteorology, Casablanca, Morocco
| | - Majdouline Obtel
- Laboratory of Biostatistics, Clinical, and Epidemiological Research, & Laboratory of Community Health (Public Health, Preventive Medicine and Hygiene), Department of Public Health, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Lahcen Belyamani
- Department of Public Health and Clinical Research, Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Mohamed Khalis
- Department of Public Health and Clinical Research, Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI International School of Public Health, Mohammed VI University of Sciences and Health, Casablanca, Casablanca-Settat, Morocco
- Higher Institute of Nursing Professions and Health Techniques, Ministry of Health and Social Protection, Rabat, Morocco
| |
Collapse
|
3
|
Romanello M, Walawender M, Hsu SC, Moskeland A, Palmeiro-Silva Y, Scamman D, Ali Z, Ameli N, Angelova D, Ayeb-Karlsson S, Basart S, Beagley J, Beggs PJ, Blanco-Villafuerte L, Cai W, Callaghan M, Campbell-Lendrum D, Chambers JD, Chicmana-Zapata V, Chu L, Cross TJ, van Daalen KR, Dalin C, Dasandi N, Dasgupta S, Davies M, Dubrow R, Eckelman MJ, Ford JD, Freyberg C, Gasparyan O, Gordon-Strachan G, Grubb M, Gunther SH, Hamilton I, Hang Y, Hänninen R, Hartinger S, He K, Heidecke J, Hess JJ, Jamart L, Jankin S, Jatkar H, Jay O, Kelman I, Kennard H, Kiesewetter G, Kinney P, Kniveton D, Kouznetsov R, Lampard P, Lee JKW, Lemke B, Li B, Liu Y, Liu Z, Llabrés-Brustenga A, Lott M, Lowe R, Martinez-Urtaza J, Maslin M, McAllister L, McMichael C, Mi Z, Milner J, Minor K, Minx J, Mohajeri N, Momen NC, Moradi-Lakeh M, Morrisey K, Munzert S, Murray KA, Obradovich N, O'Hare MB, Oliveira C, Oreszczyn T, Otto M, Owfi F, Pearman OL, Pega F, Perishing AJ, Pinho-Gomes AC, Ponmattam J, Rabbaniha M, Rickman J, Robinson E, Rocklöv J, Rojas-Rueda D, Salas RN, Semenza JC, Sherman JD, Shumake-Guillemot J, Singh P, Sjödin H, Slater J, Sofiev M, Sorensen C, Springmann M, et alRomanello M, Walawender M, Hsu SC, Moskeland A, Palmeiro-Silva Y, Scamman D, Ali Z, Ameli N, Angelova D, Ayeb-Karlsson S, Basart S, Beagley J, Beggs PJ, Blanco-Villafuerte L, Cai W, Callaghan M, Campbell-Lendrum D, Chambers JD, Chicmana-Zapata V, Chu L, Cross TJ, van Daalen KR, Dalin C, Dasandi N, Dasgupta S, Davies M, Dubrow R, Eckelman MJ, Ford JD, Freyberg C, Gasparyan O, Gordon-Strachan G, Grubb M, Gunther SH, Hamilton I, Hang Y, Hänninen R, Hartinger S, He K, Heidecke J, Hess JJ, Jamart L, Jankin S, Jatkar H, Jay O, Kelman I, Kennard H, Kiesewetter G, Kinney P, Kniveton D, Kouznetsov R, Lampard P, Lee JKW, Lemke B, Li B, Liu Y, Liu Z, Llabrés-Brustenga A, Lott M, Lowe R, Martinez-Urtaza J, Maslin M, McAllister L, McMichael C, Mi Z, Milner J, Minor K, Minx J, Mohajeri N, Momen NC, Moradi-Lakeh M, Morrisey K, Munzert S, Murray KA, Obradovich N, O'Hare MB, Oliveira C, Oreszczyn T, Otto M, Owfi F, Pearman OL, Pega F, Perishing AJ, Pinho-Gomes AC, Ponmattam J, Rabbaniha M, Rickman J, Robinson E, Rocklöv J, Rojas-Rueda D, Salas RN, Semenza JC, Sherman JD, Shumake-Guillemot J, Singh P, Sjödin H, Slater J, Sofiev M, Sorensen C, Springmann M, Stalhandske Z, Stowell JD, Tabatabaei M, Taylor J, Tong D, Tonne C, Treskova M, Trinanes JA, Uppstu A, Wagner F, Warnecke L, Whitcombe H, Xian P, Zavaleta-Cortijo C, Zhang C, Zhang R, Zhang S, Zhang Y, Zhu Q, Gong P, Montgomery H, Costello A. The 2024 report of the Lancet Countdown on health and climate change: facing record-breaking threats from delayed action. Lancet 2024; 404:1847-1896. [PMID: 39488222 PMCID: PMC7616816 DOI: 10.1016/s0140-6736(24)01822-1] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/04/2024] [Accepted: 08/29/2024] [Indexed: 11/04/2024]
Abstract
Despite the initial hope inspired by the 2015 Paris Agreement, the world is now dangerously close to breaching its target of limiting global multiyear mean heating to 1·5°C. Annual mean surface temperature reached a record high of 1·45°C above the pre-industrial baseline in 2023, and new temperature highs were recorded throughout 2024. The resulting climatic extremes are increasingly claiming lives and livelihoods worldwide. The Lancet Countdown: tracking progress on health and climate change was established the same year the Paris Agreement entered into force, to monitor the health impacts and opportunities of the world’s response to this landmark agreement. Supported through strategic core funding from Wellcome, the collaboration brings together over 300 multidisciplinary researchers and health professionals from around the world to take stock annually of the evolving links between health and climate change at global, regional, and national levels. The 2024 report of the Lancet Countdown, building on the expertise of 122 leading researchers from UN agencies and academic institutions worldwide, reveals the most concerning findings yet in the collaboration’s 8 years of monitoring.
Collapse
Affiliation(s)
- Marina Romanello
- Institute for Global Health, University College London, London, UK.
| | - Maria Walawender
- Institute for Global Health, University College London, London, UK
| | - Shih-Che Hsu
- Energy Institute, University College London, London, UK
| | - Annalyse Moskeland
- Department of Geography and Environment, London School of Economics and Political Science, London, UK
| | | | - Daniel Scamman
- Institute for Sustainable Resources, University College London, London, UK
| | - Zakari Ali
- Medical Research Council Unit, The Gambia, London School of Hygiene & Tropical Medicine, Serekunda, The Gambia
| | - Nadia Ameli
- Institute for Sustainable Resources, University College London, London, UK
| | - Denitsa Angelova
- Institute for Sustainable Resources, University College London, London, UK
| | - Sonja Ayeb-Karlsson
- Department of Risk and Disaster Reduction, University College London, London, UK
| | - Sara Basart
- World Metereological Organization, Geneva, Switzerland
| | | | - Paul J Beggs
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Luciana Blanco-Villafuerte
- Centro Latino Americano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Wenjia Cai
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Max Callaghan
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | | | | | - Victoria Chicmana-Zapata
- Intercultural Citizenship and Indigenous Health Unit, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Lingzhi Chu
- Yale Center on Climate Change and Health, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Troy J Cross
- Heat and Health Research Centre, University of Sydney, Sydney, NSW, Australia
| | | | - Carole Dalin
- Institute for Sustainable Resources, University College London, London, UK
| | - Niheer Dasandi
- School of Government, University of Birmingham, Birmingham, UK
| | - Shouro Dasgupta
- Euro-Mediterranean Center on Climate Change Foundation, Lecce, Italy
| | - Michael Davies
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Robert Dubrow
- Yale Center on Climate Change and Health, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Matthew J Eckelman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - James D Ford
- Priestley Centre for Climate Futures, University of Leeds, Leeds, UK
| | | | - Olga Gasparyan
- Department of Political Science, Florida State University, Tallahassee, FL, USA
| | - Georgiana Gordon-Strachan
- Tropical Metabolism Research Unit, Caribbean Institute for Health Research, University of the West Indies, Kingston, Jamaica
| | - Michael Grubb
- Institute for Sustainable Resources, University College London, London, UK
| | - Samuel H Gunther
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ian Hamilton
- Energy Institute, University College London, London, UK
| | - Yun Hang
- Department of Environmental and Occupational Health Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Stella Hartinger
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kehan He
- Institute for Climate and Carbon Neutrality, University of Hong Kong, Hong Kong Special Administrative Region, China; University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Julian Heidecke
- Interdisciplinary Centre for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Jeremy J Hess
- Centre for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | - Louis Jamart
- Institute for Global Health, University College London, London, UK
| | - Slava Jankin
- School of Government, University of Birmingham, Birmingham, UK
| | | | - Ollie Jay
- Heat and Health Research Centre, University of Sydney, Sydney, NSW, Australia
| | - Ilan Kelman
- Institute for Global Health, University College London, London, UK
| | - Harry Kennard
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | - Gregor Kiesewetter
- Pollution Management Group, Program on Energy, Climate and the Environment, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Patrick Kinney
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | | | | | - Pete Lampard
- Department of Health Sciences, University of York, York, UK
| | - Jason K W Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bruno Lemke
- Nelson Marlborough Institute of Technology-Te Pukenga, Nelson, New Zealand
| | - Bo Li
- School of Management, Beijing Institute of Technology, Beijing, China
| | - Yang Liu
- Emory University, Atlanta, GA, USA
| | - Zhao Liu
- Department of Earth System Science, Tsinghua University, Beijing, China
| | | | - Melissa Lott
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | - Rachel Lowe
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, School of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mark Maslin
- Department of Geography, University College London, London, UK
| | - Lucy McAllister
- Environmental Studies Program, Denison University, Granville, OH, USA
| | - Celia McMichael
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Zhifu Mi
- Bartlett School of Sustainable Construction, University College London, London, UK
| | - James Milner
- Department of Public Health, Environments, and Society, London School of Hygiene and Tropical Medicine, London, UK
| | - Kelton Minor
- Data Science Institute, Columbia University, New York, NY, USA
| | - Jan Minx
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | - Nahid Mohajeri
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Natalie C Momen
- Department of Environment, Climate Change and Health, WHO, Geneva, Switzerland
| | - Maziar Moradi-Lakeh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Karyn Morrisey
- Department of Technology, Management and Economics, Technical University of Denmark, Copenhagen, Denmark
| | | | - Kris A Murray
- Medical Research Council Unit, The Gambia, London School of Hygiene & Tropical Medicine, Serekunda, The Gambia
| | - Nick Obradovich
- Laureate Institute for Brain Research, Massachusetts Institute of Technology, Tulsa, OK, USA
| | - Megan B O'Hare
- Institute for Global Health, University College London, London, UK
| | - Camile Oliveira
- Institute for Global Health, University College London, London, UK
| | | | - Matthias Otto
- Nelson Marlborough Institute of Technology-Te Pukenga, Nelson, New Zealand
| | - Fereidoon Owfi
- Agricultural Research, Education and Extension Organization, Iranian Fisheries Science Research Institute, Tehran, Iran
| | - Olivia L Pearman
- Social and Economic Analysis Branch, US Geological Survey, Fort Collins, OH, USA
| | - Frank Pega
- Department of Environment, Climate Change and Health, WHO, Geneva, Switzerland
| | | | | | - Jamie Ponmattam
- Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Mahnaz Rabbaniha
- Agricultural Research, Education and Extension Organization, Iranian Fisheries Science Research Institute, Tehran, Iran
| | - Jamie Rickman
- Institute for Sustainable Resources, University College London, London, UK
| | | | - Joacim Rocklöv
- Interdisciplinary Centre for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - David Rojas-Rueda
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Renee N Salas
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jan C Semenza
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Jodi D Sherman
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | | | - Pratik Singh
- Interdisciplinary Centre for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Henrik Sjödin
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Jessica Slater
- Pollution Management Group, Program on Energy, Climate and the Environment, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | | | - Cecilia Sorensen
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Marco Springmann
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Jennifer D Stowell
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Jonathon Taylor
- Department of Civil Engineering, Tampere University, Tampere, Finland
| | | | - Cathryn Tonne
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Marina Treskova
- Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany
| | - Joaquin A Trinanes
- Department of Electronics and Computer Sciences, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Fabian Wagner
- Pollution Management Group, Program on Energy, Climate and the Environment, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Laura Warnecke
- Pollution Management Group, Program on Energy, Climate and the Environment, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Hannah Whitcombe
- Institute for Global Health, University College London, London, UK
| | - Peng Xian
- United States Navy Research Laboratory, Monterey, CA, USA
| | - Carol Zavaleta-Cortijo
- Intercultural Citizenship and Indigenous Health Unit, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Chi Zhang
- School of Management, Beijing Institute of Technology, Beijing, China
| | - Ran Zhang
- Natural Language Learning Group, University of Mannheim, Mannheim, Germany
| | - Shihui Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ying Zhang
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Qiao Zhu
- Emory University, Atlanta, GA, USA
| | - Peng Gong
- Department of Geography, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hugh Montgomery
- Centre for Human Health and Performance, University College London, London, UK
| | - Anthony Costello
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
4
|
Pozzer A, Steffens B, Proestos Y, Sciare J, Akritidis D, Chowdhury S, Burkart K, Bacer S. Atmospheric health burden across the century and the accelerating impact of temperature compared to pollution. Nat Commun 2024; 15:9379. [PMID: 39477938 PMCID: PMC11525551 DOI: 10.1038/s41467-024-53649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Anthropogenic emissions alter atmospheric composition and therefore the climate, with implications for air pollution- and climate-related human health. Mortality attributable to air pollution and non-optimal temperature is a major concern, expected to shift under future climate change and socioeconomic scenarios. In this work, results from numerical simulations are used to assess future changes in mortality attributable to long-term exposure to both non-optimal temperature and air pollution simultaneously. Here we show that under a realistic scenario, end-of-century mortality could quadruple from present-day values to around 30 (95% confidence level:12-53) million people/year. While pollution-related mortality is projected to increase five-fold, temperature-related mortality will experience a seven-fold rise, making it a more important health risk factor than air pollution for at least 20% of the world's population. These findings highlight the urgent need to implement stronger climate policies to prevent future loss of life, outweighing the benefits of air quality improvements alone.
Collapse
Affiliation(s)
- Andrea Pozzer
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner weg, Mainz, 55128, Germany.
- Climate and Atmosphere Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia, 2121, Cyprus.
| | - Brendan Steffens
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner weg, Mainz, 55128, Germany
| | - Yiannis Proestos
- Climate and Atmosphere Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia, 2121, Cyprus
| | - Jean Sciare
- Climate and Atmosphere Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia, 2121, Cyprus
| | - Dimitris Akritidis
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner weg, Mainz, 55128, Germany
- Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | | - Katrin Burkart
- Department of Health Metrics Sciences, University of Washington, 15th Ave NE, 3980, Seattle, 98195, WA, USA
| | - Sara Bacer
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner weg, Mainz, 55128, Germany
| |
Collapse
|
5
|
Wan L, Tong M, Bai X, Vardoulakis S. Mortality attributable to ambient PM2.5 exposure across regions in China from 2005 to 2020. ENVIRONMENTAL ADVANCES 2024; 17:100591. [DOI: 10.1016/j.envadv.2024.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Boogaard H, Crouse DL, Tanner E, Mantus E, van Erp AM, Vedal S, Samet J. Assessing Adverse Health Effects of Long-Term Exposure to Low Levels of Ambient Air Pollution: The HEI Experience and What's Next? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12767-12783. [PMID: 38991107 PMCID: PMC11270999 DOI: 10.1021/acs.est.3c09745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Although concentrations of ambient air pollution continue to decline in high-income regions, epidemiological studies document adverse health effects at levels below current standards in many countries. The Health Effects Institute (HEI) recently completed a comprehensive research initiative to investigate the health effects of long-term exposure to low levels of air pollution in the United States (U.S.), Canada, and Europe. We provide an overview and synthesis of the results of this initiative along with other key research, the strengths and limitations of the research, and remaining research needs. The three studies funded through the HEI initiative estimated the effects of long-term ambient exposure to fine particulate matter (PM2.5), nitrogen dioxide, ozone, and other pollutants on a broad range of health outcomes, including cause-specific mortality and cardiovascular and respiratory morbidity. To ensure high quality research and comparability across studies, HEI worked actively with the study teams and engaged independent expert panels for project oversight and review. All three studies documented positive associations between mortality and exposure to PM2.5 below the U.S. National Ambient Air Quality Standards and current and proposed European Union limit values. Furthermore, the studies observed nonthreshold linear (U.S.), or supra-linear (Canada and Europe) exposure-response functions for PM2.5 and mortality. Heterogeneity was found in both the magnitude and shape of this association within and across studies. Strengths of the studies included the large populations (7-69 million), state-of-the-art exposure assessment methods, and thorough statistical analyses that applied novel methods. Future work is needed to better understand potential sources of heterogeneity in the findings across studies and regions. Other areas of future work include the changing and evolving nature of PM components and sources, including wildfires, and the role of indoor environments. This research initiative provided important new evidence of the adverse effects of long-term exposures to low levels of air pollution at and below current standards, suggesting that further reductions could yield larger benefits than previously anticipated.
Collapse
Affiliation(s)
- Hanna Boogaard
- Health
Effects Institute, 75 Federal Street, Boston, Massachusetts 02110-1940, United States
| | - Dan L. Crouse
- Health
Effects Institute, 75 Federal Street, Boston, Massachusetts 02110-1940, United States
| | - Eva Tanner
- Health
Effects Institute, 75 Federal Street, Boston, Massachusetts 02110-1940, United States
| | - Ellen Mantus
- Health
Effects Institute, 75 Federal Street, Boston, Massachusetts 02110-1940, United States
| | - Annemoon M. van Erp
- Health
Effects Institute, 75 Federal Street, Boston, Massachusetts 02110-1940, United States
| | - Sverre Vedal
- Department
of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way N.E., Seattle, Washington 98105, United States
| | - Jonathan Samet
- Department
of Environmental & Occupational Health, Department of Epidemiology, Colorado School of Public Health, 13001 East 17th Place, Aurora, Colorado 80045, United States
| |
Collapse
|
7
|
Yin H, McDuffie EE, Martin RV, Brauer M. Global health costs of ambient PM 2·5 from combustion sources: a modelling study supporting air pollution control strategies. Lancet Planet Health 2024; 8:e476-e488. [PMID: 38969475 DOI: 10.1016/s2542-5196(24)00098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Climate actions targeting combustion sources can generate large ancillary health benefits via associated air-quality improvements. Therefore, understanding the health costs associated with ambient fine particulate matter (PM2·5) from combustion sources can guide policy design for both air pollution and climate mitigation efforts. METHODS In this modelling study, we estimated the health costs attributable to ambient PM2·5 from six major combustion sources across 204 countries using updated concentration-response models and an age-adjusted valuation method. We defined major combustion sources as the sum of total coal, liquid fuel and natural gas, solid biofuel, agricultural waste burning, other fires, and 50% of the anthropogenic fugitive, combustion, and industrial dust source. FINDINGS Global long-term exposure to ambient PM2·5 from combustion sources imposed US$1·1 (95% uncertainty interval 0·8-1·5) trillion in health costs in 2019, accounting for 56% of the total health costs from all PM2·5 sources. Comparing source contributions to PM2·5 concentrations and health costs, we observed a higher share of health costs from combustion sources compared to their contribution to population-weighted PM2·5 concentration across 134 countries, accounting for more than 87% of the global population. This disparity was primarily attributed to the non-linear relationship between PM2·5 concentration and its associated health costs. Globally, phasing out fossil fuels can generate 23% higher relative health benefits compared to their share of PM2·5 reductions. Specifically, the share of health costs for total coal was 36% higher than the source's contributions to corresponding PM2·5 concentrations and the share of health costs for liquid fuel and natural gas was 12% higher. Other than fossil fuels, South Asia was expected to show 16% greater relative health benefits than the percentage reduction in PM2·5 from the abatement of solid biofuel emissions. INTERPRETATION In most countries, targeting combustion sources might offer greater health benefits than non-combustion sources. This finding provides additional rationale for climate actions aimed at phasing out combustion sources, especially those related to fossil fuels and solid biofuel. Mitigation efforts designed according to source-specific health costs can more effectively avoid health costs than strategies that depend solely on the source contributions to overall PM2·5 concentration. FUNDING The Health Effects Institute, the National Natural Science Foundation of China, and NASA.
Collapse
Affiliation(s)
- Hao Yin
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada; Department of Economics, University of Southern California, Los Angeles, CA, USA.
| | - Erin E McDuffie
- Energy, Environmental, Chemical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Randall V Martin
- Energy, Environmental, Chemical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Yue H, He C, Huang Q, Zhang D, Shi P, Moallemi EA, Xu F, Yang Y, Qi X, Ma Q, Bryan BA. Substantially reducing global PM 2.5-related deaths under SDG3.9 requires better air pollution control and healthcare. Nat Commun 2024; 15:2729. [PMID: 38548716 PMCID: PMC10978932 DOI: 10.1038/s41467-024-46969-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
The United Nations' Sustainable Development Goal (SDG) 3.9 calls for a substantial reduction in deaths attributable to PM2.5 pollution (DAPP). However, DAPP projections vary greatly and the likelihood of meeting SDG3.9 depends on complex interactions among environmental, socio-economic, and healthcare parameters. We project potential future trends in global DAPP considering the joint effects of each driver (PM2.5 concentration, death rate of diseases, population size, and age structure) and assess the likelihood of achieving SDG3.9 under the Shared Socioeconomic Pathways (SSPs) as quantified by the Scenario Model Intercomparison Project (ScenarioMIP) framework with simulated PM2.5 concentrations from 11 models. We find that a substantial reduction in DAPP would not be achieved under all but the most optimistic scenario settings. Even the development aligned with the Sustainability scenario (SSP1-2.6), in which DAPP was reduced by 19%, still falls just short of achieving a substantial (≥20%) reduction by 2030. Meeting SDG3.9 calls for additional efforts in air pollution control and healthcare to more aggressively reduce DAPP.
Collapse
Affiliation(s)
- Huanbi Yue
- Key Laboratory of Environmental Change and Natural Disasters of Chinese Ministry of Education, Beijing Normal University, Beijing, China
- School of International Affairs and Public Administration, Ocean University of China, Qingdao, China
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Chunyang He
- Key Laboratory of Environmental Change and Natural Disasters of Chinese Ministry of Education, Beijing Normal University, Beijing, China.
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China.
- Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management & Ministry of Education, Beijing Normal University, Beijing, China.
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, China.
| | - Qingxu Huang
- Key Laboratory of Environmental Change and Natural Disasters of Chinese Ministry of Education, Beijing Normal University, Beijing, China
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Da Zhang
- College of Geography and Ocean Sciences, Yanbian University, Yanji, China.
| | - Peijun Shi
- Key Laboratory of Environmental Change and Natural Disasters of Chinese Ministry of Education, Beijing Normal University, Beijing, China
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
- Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management & Ministry of Education, Beijing Normal University, Beijing, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, China
| | - Enayat A Moallemi
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Melbourne, Victoria, Australia
| | - Fangjin Xu
- Key Laboratory of Environmental Change and Natural Disasters of Chinese Ministry of Education, Beijing Normal University, Beijing, China
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yang Yang
- School of International Affairs and Public Administration, Ocean University of China, Qingdao, China
- Institute of Marine Development, Ocean University of China, Qingdao, China
| | - Xin Qi
- Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, Qingdao, China
| | - Qun Ma
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, China
| | - Brett A Bryan
- School of Life and Environmental Sciences, Deakin University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Lelieveld J, Haines A, Burnett R, Tonne C, Klingmüller K, Münzel T, Pozzer A. Air pollution deaths attributable to fossil fuels: observational and modelling study. BMJ 2023; 383:e077784. [PMID: 38030155 PMCID: PMC10686100 DOI: 10.1136/bmj-2023-077784] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVES To estimate all cause and cause specific deaths that are attributable to fossil fuel related air pollution and to assess potential health benefits from policies that replace fossil fuels with clean, renewable energy sources. DESIGN Observational and modelling study. METHODS An updated atmospheric composition model, a newly developed relative risk model, and satellite based data were used to determine exposure to ambient air pollution, estimate all cause and disease specific mortality, and attribute them to emission categories. DATA SOURCES Data from the global burden of disease 2019 study, observational fine particulate matter and population data from National Aeronautics and Space Administration (NASA) satellites, and atmospheric chemistry, aerosol, and relative risk modelling for 2019. RESULTS Globally, all cause excess deaths due to fine particulate and ozone air pollution are estimated at 8.34 million (95% confidence interval 5.63 to 11.19) deaths per year. Most (52%) of the mortality burden is related to cardiometabolic conditions, particularly ischaemic heart disease (30%). Stroke and chronic obstructive pulmonary disease both account for 16% of mortality burden. About 20% of all cause mortality is undefined, with arterial hypertension and neurodegenerative diseases possibly implicated. An estimated 5.13 million (3.63 to 6.32) excess deaths per year globally are attributable to ambient air pollution from fossil fuel use and therefore could potentially be avoided by phasing out fossil fuels. This figure corresponds to 82% of the maximum number of air pollution deaths that could be averted by controlling all anthropogenic emissions. Smaller reductions, rather than a complete phase-out, indicate that the responses are not strongly non-linear. Reductions in emission related to fossil fuels at all levels of air pollution can decrease the number of attributable deaths substantially. Estimates of avoidable excess deaths are markedly higher in this study than most previous studies for these reasons: the new relative risk model has implications for high income (largely fossil fuel intensive) countries and for low and middle income countries where the use of fossil fuels is increasing; this study accounts for all cause mortality in addition to disease specific mortality; and the large reduction in air pollution from a fossil fuel phase-out can greatly reduce exposure. CONCLUSION Phasing out fossil fuels is deemed to be an effective intervention to improve health and save lives as part the United Nations' goal of climate neutrality by 2050. Ambient air pollution would no longer be a leading, environmental health risk factor if the use of fossil fuels were superseded by equitable access to clean sources of renewable energy.
Collapse
Affiliation(s)
- Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Climate and Atmosphere Research Center, Cyprus Institute, Nicosia, Cyprus
| | - Andy Haines
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Richard Burnett
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Cathryn Tonne
- Barcelona Institute for Global Health and Pompeu Fabra University, Barcelona, Spain
- Center for Biomedical Research in Epidemiology and Public Health Network, Madrid, Spain
| | - Klaus Klingmüller
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Andrea Pozzer
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Climate and Atmosphere Research Center, Cyprus Institute, Nicosia, Cyprus
| |
Collapse
|
10
|
Lehtomäki H, Rao S, Hänninen O. Phasing out fossil fuels would save millions of lives worldwide. BMJ 2023; 383:2774. [PMID: 38030218 PMCID: PMC10686099 DOI: 10.1136/bmj.p2774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Affiliation(s)
- Heli Lehtomäki
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Shilpa Rao
- Norwegian Institute of Public Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Otto Hänninen
- Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
11
|
Marais EA, Kelly JM, Vohra K, Li Y, Lu G, Hina N, Rowe EC. Impact of Legislated and Best Available Emission Control Measures on UK Particulate Matter Pollution, Premature Mortality, and Nitrogen-Sensitive Habitats. GEOHEALTH 2023; 7:e2023GH000910. [PMID: 37885915 PMCID: PMC10599219 DOI: 10.1029/2023gh000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Past emission controls in the UK have substantially reduced precursor emissions of health-hazardous fine particles (PM2.5) and nitrogen pollution detrimental to ecosystems. Still, 79% of the UK exceeds the World Health Organization (WHO) guideline for annual mean PM2.5 of 5 μg m-3 and there is no enforcement of controls on agricultural sources of ammonia (NH3). NH3 is a phytotoxin and an increasingly large contributor to PM2.5 and nitrogen deposited to sensitive habitats. Here we use emissions projections, the GEOS-Chem model, high-resolution data sets, and contemporary exposure-risk relationships to assess potential human and ecosystem health co-benefits in 2030 relative to the present day of adopting legislated or best available emission control measures. We estimate that present-day annual adult premature mortality attributable to exposure to PM2.5 is 48,625 (95% confidence interval: 45,188-52,595), that harmful amounts of reactive nitrogen deposit to almost all (95%) sensitive habitat areas, and that 75% of ambient NH3 exceeds levels safe for bryophytes and lichens. Legal measures decrease the extent of the UK above the WHO guideline to 58% and avoid 6,800 premature deaths by 2030. This improves with best available measures to 36% of the UK and 13,300 avoided deaths. Both legal and best available measures are insufficient at reducing the extent of damage of nitrogen pollution to sensitive habitats. Far more ambitious reductions in nitrogen emissions (>80%) than is achievable with best available measures (34%) are required to halve the amount of excess nitrogen deposited to sensitive habitats.
Collapse
Affiliation(s)
| | - Jamie M. Kelly
- Department of GeographyUniversity College LondonLondonUK
- Now at Centre for Research and Clean AirHelsinkiFinland
| | - Karn Vohra
- Department of GeographyUniversity College LondonLondonUK
| | - Yifan Li
- Reading AcademyNanjing University of Information Science and TechnologyNanjingChina
| | - Gongda Lu
- Department of GeographyUniversity College LondonLondonUK
| | - Naila Hina
- UK Centre for Ecology & HydrologyEnvironment Centre WalesBangorUK
| | - Ed C. Rowe
- UK Centre for Ecology & HydrologyEnvironment Centre WalesBangorUK
| |
Collapse
|
12
|
Li C, van Donkelaar A, Hammer MS, McDuffie EE, Burnett RT, Spadaro JV, Chatterjee D, Cohen AJ, Apte JS, Southerland VA, Anenberg SC, Brauer M, Martin RV. Reversal of trends in global fine particulate matter air pollution. Nat Commun 2023; 14:5349. [PMID: 37660164 PMCID: PMC10475088 DOI: 10.1038/s41467-023-41086-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
Ambient fine particulate matter (PM2.5) is the world's leading environmental health risk factor. Quantification is needed of regional contributions to changes in global PM2.5 exposure. Here we interpret satellite-derived PM2.5 estimates over 1998-2019 and find a reversal of previous growth in global PM2.5 air pollution, which is quantitatively attributed to contributions from 13 regions. Global population-weighted (PW) PM2.5 exposure, related to both pollution levels and population size, increased from 1998 (28.3 μg/m3) to a peak in 2011 (38.9 μg/m3) and decreased steadily afterwards (34.7 μg/m3 in 2019). Post-2011 change was related to exposure reduction in China and slowed exposure growth in other regions (especially South Asia, the Middle East and Africa). The post-2011 exposure reduction contributes to stagnation of growth in global PM2.5-attributable mortality and increasing health benefits per µg/m3 marginal reduction in exposure, implying increasing urgency and benefits of PM2.5 mitigation with aging population and cleaner air.
Collapse
Affiliation(s)
- Chi Li
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| | - Aaron van Donkelaar
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Melanie S Hammer
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Erin E McDuffie
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Office of Atmospheric Protection, Climate Change Division, U.S. Environmental Protection Agency, Washington, D.C., USA
| | - Richard T Burnett
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Population Studies Division, Health Canada, Ottawa, ON, Canada
| | - Joseph V Spadaro
- Spadaro Environmental Research Consultants (SERC), Philadelphia, PA, USA
- European Centre for Environment and Health, World Health Organization (Consultant), Bonn, North Rhine-Westphalia, Germany
| | - Deepangsu Chatterjee
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron J Cohen
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Health Effects Institute, Boston, MA, USA
| | - Joshua S Apte
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Veronica A Southerland
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Susan C Anenberg
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Michael Brauer
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Randall V Martin
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
13
|
Turnock ST, Reddington CL, West JJ, O’Connor FM. The Air Pollution Human Health Burden in Different Future Scenarios That Involve the Mitigation of Near-Term Climate Forcers, Climate and Land-Use. GEOHEALTH 2023; 7:e2023GH000812. [PMID: 37593109 PMCID: PMC10427835 DOI: 10.1029/2023gh000812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Elevated surface concentrations of ozone and fine particulate matter (PM2.5) can lead to poor air quality and detrimental impacts on human health. These pollutants are also termed Near-Term Climate Forcers (NTCFs) as they can also influence the Earth's radiative balance on timescales shorter than long-lived greenhouse gases. Here we use the Earth system model, UKESM1, to simulate the change in surface ozone and PM2.5 concentrations from different NTCF mitigation scenarios, conducted as part of the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). These are then combined with relative risk estimates and projected changes in population demographics, to estimate the mortality burden attributable to long-term exposure to ambient air pollution. Scenarios that involve the strong mitigation of air pollutant emissions yield large future benefits to human health (25%), particularly across Asia for black carbon (7%), when compared to the future reference pathway. However, if anthropogenic emissions follow the reference pathway, then impacts to human health worsen over South Asia in the short term (11%) and across Africa (20%) in the longer term. Future climate change impacts on air pollutants can offset some of the health benefits achieved by emission mitigation measures over Europe for PM2.5 and East Asia for ozone. In addition, differences in the future chemical environment over regions are important considerations for mitigation measures to achieve the largest benefit to human health. Future policy measures to mitigate climate warming need to also consider the impact on air quality and human health across different regions to achieve the maximum co-benefits.
Collapse
Affiliation(s)
- Steven T. Turnock
- Met Office Hadley CentreExeterUK
- University of Leeds Met Office Strategic (LUMOS) Research GroupUniversity of LeedsLeedsUK
| | - Carly L. Reddington
- Institute of Climate and Atmospheric Science (ICAS)School of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - J. Jason West
- Department of Environmental Sciences and EngineeringUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Fiona M. O’Connor
- Met Office Hadley CentreExeterUK
- Department of Mathematics and StatisticsGlobal Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
14
|
Hahad O, Rajagopalan S, Lelieveld J, Sørensen M, Frenis K, Daiber A, Basner M, Nieuwenhuijsen M, Brook RD, Münzel T. Noise and Air Pollution as Risk Factors for Hypertension: Part I-Epidemiology. Hypertension 2023; 80:1375-1383. [PMID: 37073726 PMCID: PMC10330192 DOI: 10.1161/hypertensionaha.122.18732] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Traffic noise and air pollution are 2 major environmental health risk factors in urbanized societies that often occur together. Despite cooccurrence in urban settings, noise and air pollution have generally been studied independently, with many studies reporting a consistent effect on blood pressure for individual exposures. In the present reviews, we will discuss the epidemiology of air pollution and noise effects on arterial hypertension and cardiovascular disease (part I) and the underlying pathophysiology (part II). Both environmental stressors have been found to cause endothelial dysfunction, oxidative stress, vascular inflammation, circadian dysfunction, and activation of the autonomic nervous system, thereby facilitating the development of hypertension. We also discuss the effects of interventions, current gaps in knowledge, and future research tasks. From a societal and policy perspective, the health effects of both air pollution and traffic noise are observed well below the current guideline recommendations. To this end, an important goal for the future is to increase the acceptance of environmental risk factors as important modifiable cardiovascular risk factors, given their substantial impact on the burden of cardiovascular disease.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals and Case Western Reserve University, Cleveland, OH, USA
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Mette Sørensen
- Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Katie Frenis
- Boston Children’s Hospital and Harvard Medical School, Hematology/Oncology, Boston, MA, USA
| | - Andreas Daiber
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Mathias Basner
- Department of Psychiatry, Unit for Experimental Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiologıa y Salud Publica (CIBERESP), Madrid, Spain
- Center for Urban Research, RMIT University, Melbourne VIC, Australia
| | - Robert D. Brook
- Division of Cardiovascular Diseases, Department of Internal Medicine, Wayne State University, Detroit, MI, USA
| | - Thomas Münzel
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
15
|
Pozzer A, Anenberg SC, Dey S, Haines A, Lelieveld J, Chowdhury S. Mortality Attributable to Ambient Air Pollution: A Review of Global Estimates. GEOHEALTH 2023; 7:e2022GH000711. [PMID: 36636746 PMCID: PMC9828848 DOI: 10.1029/2022gh000711] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 05/31/2023]
Abstract
Since the publication of the first epidemiological study to establish the connection between long-term exposure to atmospheric pollution and effects on human health, major efforts have been dedicated to estimate the attributable mortality burden, especially in the context of the Global Burden of Disease (GBD). In this work, we review the estimates of excess mortality attributable to outdoor air pollution at the global scale, by comparing studies available in the literature. We find large differences between the estimates, which are related to the exposure response functions as well as the number of health outcomes included in the calculations, aspects where further improvements are necessary. Furthermore, we show that despite the considerable advancements in our understanding of health impacts of air pollution and the consequent improvement in the accuracy of the global estimates, their precision has not increased in the last decades. We offer recommendations for future measurements and research directions, which will help to improve our understanding and quantification of air pollution-health relationships.
Collapse
Affiliation(s)
- A. Pozzer
- Max Planck Institute for ChemistryMainzGermany
- The Cyprus InstituteNicosiaCyprus
| | - S. C. Anenberg
- Milken Institute School of Public HealthWashington UniversityWashingtonDCUSA
| | - S. Dey
- Indian Institute of Technology DelhiDelhiIndia
| | - A. Haines
- London School of Hygiene and Tropical MedicineLondonUK
| | - J. Lelieveld
- Max Planck Institute for ChemistryMainzGermany
- The Cyprus InstituteNicosiaCyprus
| | - S. Chowdhury
- Max Planck Institute for ChemistryMainzGermany
- CICERO Center for International Climate ResearchOsloNorway
| |
Collapse
|
16
|
Zhang X, Sun H, Li K, Nie X, Fan Y, Wang H, Ma J. Comparison of the Application of Three Methods for the Determination of Outdoor PM 2.5 Design Concentrations for Fresh Air Filtration Systems in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192416537. [PMID: 36554417 PMCID: PMC9779298 DOI: 10.3390/ijerph192416537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/12/2023]
Abstract
With the increasing popularity of fresh-air filtration systems, the methods of determining the outdoor PM2.5 design concentration have become more important. However, the monitoring of atmospheric fine particles in China started relatively late, and there are relatively few cities with complete data, with obvious regional differences, which led to many problems in the selection of air filters for fresh-air filtration systems. In this paper, three methods of determining outdoor PM2.5 design concentration were analyzed using the daily average concentration of PM2.5 in 31 provincial capital cities from 2016 to 2020. Six typical cities in different regions were also taken as examples. The advantages and disadvantages of the three existing statistical methods were compared and analyzed, as well as the corresponding differences in the selection of outdoor PM2.5 concentration value on the filter systems. The results showed that the method of mathematical induction was more accurate and reasonable for the calculation of outdoor PM2.5 design concentrations. The local outdoor PM2.5 design concentration could be quickly calculated using the recommended coefficient K and annual average PM2.5 concentration of the region, especially for small and medium-sized cities without monitoring data. However, the recommended coefficient K should be provided based on the specific region, and should be divided into values for strict conditions and normal conditions during use. This would provide a simple and effective way to select the correct air filters for practical engineering.
Collapse
Affiliation(s)
- Xin Zhang
- School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Hao Sun
- School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Kaipeng Li
- School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Xingxin Nie
- School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Yuesheng Fan
- School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Huan Wang
- School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Jingyao Ma
- School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| |
Collapse
|
17
|
Weichenthal S, Pinault L, Christidis T, Burnett RT, Brook JR, Chu Y, Crouse DL, Erickson AC, Hystad P, Li C, Martin RV, Meng J, Pappin AJ, Tjepkema M, van Donkelaar A, Weagle CL, Brauer M. How low can you go? Air pollution affects mortality at very low levels. SCIENCE ADVANCES 2022; 8:eabo3381. [PMID: 36170354 PMCID: PMC9519036 DOI: 10.1126/sciadv.abo3381] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/11/2022] [Indexed: 05/29/2023]
Abstract
The World Health Organization (WHO) recently released new guidelines for outdoor fine particulate air pollution (PM2.5) recommending an annual average concentration of 5 μg/m3. Yet, our understanding of the concentration-response relationship between outdoor PM2.5 and mortality in this range of near-background concentrations remains incomplete. To address this uncertainty, we conducted a population-based cohort study of 7.1 million adults in one of the world's lowest exposure environments. Our findings reveal a supralinear concentration-response relationship between outdoor PM2.5 and mortality at very low (<5 μg/m3) concentrations. Our updated global concentration-response function incorporating this new information suggests an additional 1.5 million deaths globally attributable to outdoor PM2.5 annually compared to previous estimates. The global health benefits of meeting the new WHO guideline for outdoor PM2.5 are greater than previously assumed and indicate a need for continued reductions in outdoor air pollution around the world.
Collapse
Affiliation(s)
- Scott Weichenthal
- McGill University, Montreal, QC, Canada
- Health Canada, Ottawa, ON, Canada
| | | | | | - Richard T. Burnett
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | | | - Yen Chu
- University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Chi Li
- Dalhousie University, Halifax, NS, Canada
| | - Randall V. Martin
- Dalhousie University, Halifax, NS, Canada
- Washington University, Saint Louis, WA, USA
| | - Jun Meng
- Washington University, Saint Louis, WA, USA
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | | | | | - Aaron van Donkelaar
- Dalhousie University, Halifax, NS, Canada
- Washington University, Saint Louis, WA, USA
| | | | - Michael Brauer
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Hou X, Guo Q, Hong Y, Yang Q, Wang X, Zhou S, Liu H. Assessment of PM 2.5-related health effects: A comparative study using multiple methods and multi-source data in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119381. [PMID: 35500711 DOI: 10.1016/j.envpol.2022.119381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
In China, PM2.5 pollution has caused extensive death and economic loss. Thus, an accurate assessment of the spatial distribution of these losses is crucial for delineating priority areas for air pollution control in China. In this study, we assessed the PM2.5 exposure-related health effects according to the integrated exposure risk function and non-linear power law (NLP) function in 338 prefecture-level cities in China by utilizing online monitoring data and the PM2.5 Hindcast Database (PHD). Our results revealed no significant difference between the monitoring data and PHD (p value = 0.66 > 0.05). The number of deaths caused by PM2.5-related Stroke (cerebrovascular disease), ischemic heart disease, chronic obstructive pulmonary disease, and lung cancer at the national level estimated through the NLP function was 0.27 million (95% CI: 0.06-0.50), 0.23 million (95% CI: 0.08-0.38), 0.31 million (95% CI: 0.04-0.57), and 0.31 million (95% CI: 0.16-0.40), respectively. The total economic cost at the national level in 2016 was approximately US$80.25 billion (95% CI: 24.46-132.25). Based on a comparison of Z statistics, we propose that the evaluation results obtained using the NLP function and monitoring data are accurate. Additionally, according to scenario simulations, Beijing, Chongqing, Tianjin, and other cities should be priority areas for PM2.5 pollution control to achieve considerable health benefits. Our statistics can help improve the accuracy of PM2.5-related health effect assessments in China.
Collapse
Affiliation(s)
- Xiaoyun Hou
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310016, China; Zhejiang Academy of Ecological Civilization, Hangzhou, 310016, China
| | - Qinghai Guo
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310016, China; Zhejiang Academy of Ecological Civilization, Hangzhou, 310016, China.
| | - Yan Hong
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310016, China
| | - Qiaowei Yang
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310016, China
| | - Xinkui Wang
- Dongying Development and Reform Commission, Dongying, 370502, China
| | - Siyang Zhou
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Haiqiang Liu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310016, China
| |
Collapse
|