1
|
Huang H, Wang K, Liu X, Liu X, Wang J, Suo M, Wang H, Chen S, Chen X, Li Z. Piezoelectric biomaterials for providing electrical stimulation in bone tissue engineering: Barium titanate. J Orthop Translat 2025; 51:94-107. [PMID: 39991455 PMCID: PMC11847244 DOI: 10.1016/j.jot.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
With the increasing clinical demand for orthopedic implants, bone tissue engineering based on a variety of bioactive materials has shown promising applications in bone repair. And various physiological cues, such as mechanical, electrical, and magnetic stimulation, can influence cell fate and participate in bone regeneration. Natural bone has a piezoelectric effect due to the non-centrosymmetric nature of collagen, which can aid in cell adhesion, proliferation and differentiation, and bone growth by converting mechanical stimuli into electrical stimuli. Piezoelectric materials have the same piezoelectric effect as human bone, and they are able to deform in response to physiological movement, thus providing electrical stimulation to cells or damaged tissue without the need for an external power source. Among them, Barium titanate (BaTiO3) is widely used in tumor therapy, tissue engineering, health detection and drug delivery because of its good biocompatibility, low cytotoxicity and good piezoelectric properties. This review describes the piezoelectric effect of natural bone and the characteristics of various types of piezoelectric materials, from the synthesis and physicochemical characteristics of BaTiO3 and its application in biomedicine. And it highlights the great potential of BaTiO3 as piezoelectric biomaterials in the field of bone tissue engineering in anticipation of providing new ideas and opportunities for researchers. The translational potential of this article: This review systematically discusses barium titanate, a bioactive material that can mimic the piezoelectric effect of natural bone tissue, which can intervene in the regenerative repair of bone by providing a sustained electrical microenvironment for bone repair scaffolds. This may help to solve the current problem of poor osteogenic properties of bioactive materials by utilizing barium titanate.
Collapse
Affiliation(s)
- Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Chen
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Chen
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, China
| |
Collapse
|
2
|
Hatta FF, Mohammad Haniff MAS, Ambri Mohamed M. Enhanced-Performance Triboelectric Nanogenerator Based on Polydimethylsiloxane/Barium Titanate/Graphene Quantum Dot Nanocomposites for Energy Harvesting. ACS OMEGA 2024; 9:5608-5615. [PMID: 38343971 PMCID: PMC10851232 DOI: 10.1021/acsomega.3c07952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 04/16/2024]
Abstract
Triboelectric nanogenerators (TENGs) have been developed as promising energy-harvesting devices to effectively convert mechanical energy into electricity. TENGs use either organic or inorganic materials to initiate the triboelectrification process, followed by charge separation. In this study, a high-performance composite-based triboelectric nanogenerator (CTENG) device was fabricated, comprising polydimethylsiloxane (PDMS) as a polymeric matrix, barium titanite (BTO) nanopowders as dielectric fillers, and graphene quantum dots (GQDs) as conductive media. The PDMS/BTO/GQD composite film was prepared with GQDs doped into the mixture of PDMS/BTO and mechanically stirred. The composition of the GQD varied from 0 to 40 wt %. The composite was spin-coated onto flexible ITO on a PET sheet and dried in an oven at 80 °C for 24 h. The output performance of TENGs is enhanced by the increased concentration of 30 wt % GQD, which is 2 times higher than nanocomposite films without GQD. The PDMS/BTO/G30 TENG film depicted an increase in open-circuit voltage output (VOC), short-circuit current output (ISC), and power density reaching ∼310.0 V, ∼23.0 μA, and 1.6 W/m2, respectively. The simple and scalable process for the PDMS/BTO/GQD TENGs would benefit as a sustainable energy-harvesting system in small electronic devices.
Collapse
Affiliation(s)
- Faizatul Farah Hatta
- Centre
of Foundation Studies, Universiti Teknologi
MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia
| | | | - Mohd Ambri Mohamed
- Institute
of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Zeng Y, Pan H, Shen Z, Shen Y, Liu Z. Improved Breakdown Strength and Restrained Leakage Current of Sandwich Structure Ferroelectric Polymers Utilizing Ultra-Thin Al 2O 3 Nanosheets. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2836. [PMID: 37947683 PMCID: PMC10648876 DOI: 10.3390/nano13212836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Flexible capacity applications demand a large energy storage density and high breakdown electric field strength of flexible films. Here, P(VDF-HFP) with ultra-thin Al2O3 nanosheet composite films were designed and fabricated through an electrospinning process followed by hot-pressing into a sandwich structure. The results show that the insulating ultra-thin Al2O3 nanosheets and the sandwich structure can enhance the composites' breakdown strength (by 24.8%) and energy density (by 30.6%) compared to the P(VDF-HFP) polymer matrix. An energy storage density of 23.5 J/cm3 at the ultrahigh breakdown strength of 740 kV/mm can be therefore realized. The insulating test and phase-field simulation results reveal that ultra-thin nanosheets insulating buffer layers can reduce the leakage current in composites; thus, it affects the electric field spatial distribution to enhance breakdown strength. Our research provides a feasible method to increase the breakdown strength of ferroelectric polymers, which is comparable to those of non-ferroelectric polymers.
Collapse
Affiliation(s)
- Yi Zeng
- Faculty of Printing Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China
| | - Hao Pan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhonghui Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Yang Shen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhifu Liu
- CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| |
Collapse
|
4
|
Qin Q, Hu Y, Guo S, Yang Y, Lei T, Cui Z, Wang H, Qin S. PVDF-based composites for electromagnetic shielding application: a review. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03506-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Kumar YR, Deshmukh K, Kadlec J, Pasha SKK. Dielectric properties of
nano‐MMT
and graphene quantum dots embedded poly (vinylidene fluoride‐co‐hexafluoropropylene) nanocomposite films. J Appl Polym Sci 2023. [DOI: 10.1002/app.53724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Y. Ravi Kumar
- Functional Nanomaterials and Polymer Nanocomposite Laboratory, Department of Physics VIT‐AP University Amaravati India
| | - Kalim Deshmukh
- New Technologies—Research Center University of West Bohemia Plzeň Czech Republic
| | - Jaroslav Kadlec
- New Technologies—Research Center University of West Bohemia Plzeň Czech Republic
| | - S. K. Khadheer Pasha
- Functional Nanomaterials and Polymer Nanocomposite Laboratory, Department of Physics VIT‐AP University Amaravati India
| |
Collapse
|
6
|
Vetrimani A, Geetha K, Angel Jemima E, Arulnathan N, Kim HS, Kathalingam A. Effect of the green synthesis of CuO plate-like nanoparticles on their photodegradation and antibacterial activities. Phys Chem Chem Phys 2022; 24:28923-28933. [PMID: 36416292 DOI: 10.1039/d2cp03531f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Green synthesis of copper oxide nanoparticles and its effects on photocatalytic dye degradation and antibacterial activities are reported. The synthesis of nanoparticles by green routes provides many advantages over chemical routes, including simplicity, cost-effectiveness, and fast processing route without using any costly or harmful chemicals. Tridax procumbense (coat buttons) plant root extract was used to synthesize copper oxide nanoparticles. The synthesized Tridax procumbense-copper oxide nanoparticles (TP-CuO NPs) were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering spectroscopy (DLS), and X-ray diffraction (XRD) techniques. The synthesized TP-CuO NPs were applied for photocatalytic dye degradation and antibacterial activity studies. The TP-CuO NPs exhibited a maximum antibacterial activity at 500 μg mL-1 concentration against Staphylococcus aureus and E. coli showing inhibition zones of 7.5 mm and 7.2 mm, respectively. The photocatalytic ability of the TP-CuO was also tested against the textile dye Trypan blue (TB), and showed about 55% degradation after 48 h for 500 μg mL-1 CuO NP concentration, showing a concentration-dependent degradation efficiency. This is the first work on TP-derived CuO nanoparticles and their photocatalytic and antimicrobial applications. Overall, this study supports the superiority of green-synthesized TP-CuO NPs as photocatalytic and antimicrobial agents.
Collapse
Affiliation(s)
- A Vetrimani
- Nanotechnology Division, Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Vallam, Thanjavur, Tamil Nadu, India
| | - K Geetha
- Nanotechnology Division, Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Vallam, Thanjavur, Tamil Nadu, India
| | - E Angel Jemima
- Trichy Research Institute of Biotechnology Private Limited, Tiruchirappalli, Tamil Nadu, India
| | - N Arulnathan
- Department of Animal Nutrition, Veterinary College and Research Institute, Tirunelveli, Tamil Nadu, India
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - A Kathalingam
- Millimeter-wave Innovation Technology (MINT) Research Center, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
7
|
Kumar YR, Pasha SKK. Frequency and temperature dependent dielectric properties of polyvinyl alcohol/polystyrene sulfonic acid/cobalt oxide nanocomposite films. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2084415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Y. Ravi Kumar
- Functional Nanomaterials and Polymer Nanocomposite Laboratory, Department of Physics, VIT-AP University, Amaravati, Guntur, India
| | - S. K. Khadheer Pasha
- Functional Nanomaterials and Polymer Nanocomposite Laboratory, Department of Physics, VIT-AP University, Amaravati, Guntur, India
| |
Collapse
|