1
|
Xu J, Ganji A, Saeedi M, Jeong CH, Su Y, Munoz T, Lloyd M, Weichenthal S, Evans G, Hatzopoulou M. Unveiling the Impact of Wildfires on Nanoparticle Characteristics and Exposure Disparities through Mobile and Fixed-Site Monitoring in Toronto, Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5621-5635. [PMID: 40070205 DOI: 10.1021/acs.est.4c08675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This study investigates the impacts of wildfires on nanoparticle characteristics and exposure disparities in Toronto, integrating data from a large-scale mobile monitoring campaign and fixed-site measurements during the unprecedented 2023 wildfire season. Our results reveal changes in particle characteristics during wildfire days, with particle number concentrations decreasing by 60% and particle diameter increasing by 30% compared to nonwildfire days. Moreover, the median lung deposited surface area (LDSA) levels rose by 31% during wildfire events. We employed gradient boosting models to estimate near-road LDSA levels on both wildfire and nonwildfire days. The LDSA ratio (wildfire/nonwildfire) exceeded 2.0 in certain areas along highways and in downtown Toronto. Furthermore, our findings show that marginalized communities faced greater LDSA increases than less marginalized ones. Under wildfire conditions, the LDSA ratio difference between the most and least marginalized groups was 16% for recent immigrants and visible minorities and 7% for seniors and children, both statistically significant. This study delivers critical insights into the spatiotemporal variations of nanoparticle characteristics during wildfire and nonwildfire periods, demonstrating the substantial health risks posed by increased LDSA levels and the inequitable distribution of these risks among Toronto's diverse population.
Collapse
Affiliation(s)
- Junshi Xu
- Department of Civil and Mineral Engineering, University of Toronto, Toronto M5S 1A4 Ontario, Canada
| | - Arman Ganji
- Department of Civil and Mineral Engineering, University of Toronto, Toronto M5S 1A4 Ontario, Canada
| | - Milad Saeedi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto M5S 1A4 Ontario, Canada
| | - Cheol-Heon Jeong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Yushan Su
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke M9P 3 V6 Ontario, Canada
| | - Tony Munoz
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke M9P 3 V6 Ontario, Canada
| | - Marshall Lloyd
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal H3A 1G1 Quebec, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal H3A 1G1 Quebec, Canada
| | - Greg Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Marianne Hatzopoulou
- Department of Civil and Mineral Engineering, University of Toronto, Toronto M5S 1A4 Ontario, Canada
| |
Collapse
|
2
|
Vaze N, Calderon L, Tsiodra I, Mihalopoulos N, Serhan CN, Levy BD, Demokritou P. Assessment of the Physicochemical Properties of Ultrafine Particles (UFP) from Vehicular Emissions in a Commercial Parking Garage: Potential Health Implications. TOXICS 2024; 12:833. [PMID: 39591011 PMCID: PMC11597990 DOI: 10.3390/toxics12110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
Vehicular emissions are a major culprit in the rise of urban air pollution. The particulate matter (PM) emitted from vehicular sources includes primarily ultrafine particles (UFPs) with aerodynamic diameters less than 0.1 µm (PM0.1) and is linked to adverse respiratory and cardiovascular health effects. Despite this knowledge, few exposure assessment studies exist that detail the physicochemical properties of PM in parking garages. In this study, airborne PM emitted by vehicles in a parking garage of a hospital in New Jersey was sampled, during winter and summer seasons, and physicochemically characterized. The results indicate that the mass concentrations of the UFPs in the garage were 2.51 µg/m3 and 3.59 µg/m3, respectively. These UFPs contained a large percentage of elemental carbon and toxic elements. They also contained polycyclic aromatic hydrocarbons (PAHs), having deleterious health effects. An inhalation particle modeling revealed that 23.61% of these UFPs are deposited in the pulmonary region of the lung, translating to a dose of 10.67 µg for winter and 15.25 µg for summer, over a typical 40 h work week. These high deposited levels of UFPs and their complex chemistry levels further warrant the need for toxicological assessment of UFPs related to vehicular emissions.
Collapse
Affiliation(s)
- Nachiket Vaze
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (N.V.); (L.C.)
| | - Leonardo Calderon
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (N.V.); (L.C.)
| | - Irini Tsiodra
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, 15236 Athens, Greece; (I.T.); (N.M.)
| | - Nikolaos Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, 15236 Athens, Greece; (I.T.); (N.M.)
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Bruce D. Levy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (N.V.); (L.C.)
| |
Collapse
|
3
|
Wang C, Xiang J, Austin E, Larson T, Seto E. Quantifying the contributions of road and air traffic to ambient ultrafine particles in two urban communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123892. [PMID: 38556150 DOI: 10.1016/j.envpol.2024.123892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Traffic-related activities are widely acknowledged as a primary source of urban ambient ultrafine particles (UFPs). However, a notable gap exists in quantifying the contributions of road and air traffic to size-resolved and total UFPs in urban areas. This study aims to delineate and quantify the traffic's contributions to size-resolved and total UFPs in two urban communities. To achieve this, stationary sampling was conducted at near-road and near-airport communities in Seattle, Washington State, to monitor UFP number concentrations during 2018-2020. Comprehensive correlation analyses among all variables were performed. Furthermore, a fully adjusted generalized additive model, incorporating meteorological factors, was developed to quantify the contributions of road and air traffic to size-resolved and total UFPs. The study found that vehicle emissions accounted for 29% of total UFPs at the near-road site and 13% at the near-airport site. Aircraft emissions contributed 14% of total UFPs at the near-airport site. Notably, aircraft predominantly emitted UFP sizes below 20 nm, while vehicles mainly emitted UFP sizes below 50 nm. These findings reveal the variability in road and air traffic contributions to UFPs in distinct areas. Our study emphasizes the pivotal role of traffic layout in shaping urban UFP exposure.
Collapse
Affiliation(s)
- Chunliang Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jianbang Xiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China; Intelligent Sensing and Proactive Health Research Center, Sun Yat-sen University, Shenzhen 518107, China.
| | - Elena Austin
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Timothy Larson
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States; Department of Civil & Environmental Engineering, University of Washington, Seattle, WA 98195, United States
| | - Edmund Seto
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|