1
|
Yuan Z, Ali S, Guo T, Wang J. Z-Scheme BiOBr/Ti-MOF Nanosheet Heterojunction for Enhanced Visible-Light-Driven Pollutants Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7467-7477. [PMID: 40085738 DOI: 10.1021/acs.langmuir.4c05007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
A Z-scheme photocatalyst could enhance charge separation and extend the photocatalytic activity under visible light, improving the efficiency of pollutant degradation and other photochemical processes. In this study, a low-energy, high-performance Z-scheme BiOBr/NH2-MIL-125 (Ti) nanosheet (BiOBr/Ti-MOF NS) heterojunction photocatalyst was efficiently synthesized through a simple solvothermal method. Under visible light irradiation, the photodegradation rate constant of BiOBr/Ti-MOF NS for Rhodamine B (RhB) (k = 0.403 76 min-1) was greater than that of pure BiOBr (k = 0.089 75 min-1) and NH2-MIL-125 (Ti) (k = 0.071 67 min-1). The photodegradation rate constant (k = 0.015 58 min-1) of hexavalent chromium (Cr(VI)) was also significantly higher than that of pure BiOBr (k = 0.001 70 min-1) and NH2-MIL-125 (Ti) (k = 0.003 72 min-1). RhB was completely degraded within 6 min, while the reduction efficiency of Cr(VI) reached 79.0% within 100 min. Furthermore, the possible photocatalytic degradation mechanism of RhB in the BiOBr/Ti-MOF NS composites is proposed based on structural analysis and radical quenching experiments. The remarkable enhancement in photocatalytic performance can be attributed to its optimized band structure, accelerated charge carrier transport and separation, strong interfacial interaction, and increased adsorption capacity for pollutants. This study offers valuable insights for designing highly efficient Z-scheme heterojunction photocatalysts for pollutant removal.
Collapse
Affiliation(s)
- Zitong Yuan
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Shafqat Ali
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Taolian Guo
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Jinfeng Wang
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
2
|
Yu W, Fang N, Liu Z, Chu Y, Lai B. MIL-125-PDI/ZnIn 2S 4 Inorganic-Organic S-Scheme Heterojunction With Hierarchical Hollow Nanodisc Structure for Efficient Hydrogen Evolution from Antibiotic Wastewater Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407104. [PMID: 39434464 DOI: 10.1002/smll.202407104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Indexed: 10/23/2024]
Abstract
Efficient photocatalytic production of H2 from wastewater is expected to address environmental pollution and energy crises effectively. However, the rapid recombination of photoinduced carriers results in low photoconversion efficiency. At present, inorganic-organic S-scheme heterojunction have become a prominent and promising technology. In this study, an organic ligand modified MIL-125-PDI/ZnIn2S4 (ZIS) inorganic-organic S-scheme heterojunction catalyst is designed. ZIS nanosheets are grown on the disc-shaped MIL-125-PDI surface to form a distinctive hollow nanodiscs with hierarchical structure, giving the material an abundance of surface active sites, an optimized electronic structure, and a spatially separated redox surface. Consequently, the optimal 100MIL-125-PDI250/ZIS exhibited high photocatalytic HER of 508.99 µmol g-1 h-1 in Tetracycline hydrochloride (TC-HCl) solution. Meanwhile, the catalyst achieved complete TC-HCl removal and mineralization rate of 66.62% in 4 h. Experimental and theoretical calculations corroborate that the staggered band alignment and work function difference between MIL-125-PDI and ZIS induce the formation of a built-in electric field, thus regulating the charge transfer routes and consequently enhancing charge separation efficiency. The possible photocatalytic mechanism is analyzed using liquid chromatography-mass spectrometry (LC-MS), and the toxicities of the degradation products are also evaluated. This work presents a green dual-function strategy for H2 production and antibiotic wastewater recycling.
Collapse
Affiliation(s)
- Weili Yu
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ningjie Fang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhaobing Liu
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yinghao Chu
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Bo Lai
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
3
|
Zelekew OA, Haitosa HH, He L, Ma H, Cai J, Wang Z, Wu YN. Boosted visible-light-induced photo-Fenton degradation of organic pollutants over a novel direct Z-scheme NH 2-MIL-125(Ti)@FeOCl heterojunction catalyst. CHEMOSPHERE 2024; 365:143347. [PMID: 39284552 DOI: 10.1016/j.chemosphere.2024.143347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/21/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Improving the charge separation, charge transfer, and effective utilization is crucial in a photocatalysis system. Herein, we prepared a novel direct Z-scheme NH2-MIL-125(Ti)@FeOCl (Ti-MOF@FeOCl) composite photocatalyst through a simple method. The prepared composite catalyst was utilized in the photo-Fenton degradation of Rhodamine B (RhB) and ciprofloxacin (CIP). The Ti-MOF@FeOCl (10FeTi-MOF) catalyst exhibited the highest catalytic performance and degraded 99.1 and 66% of RhB and CIP, respectively. However, the pure NH2-MIL-125(Ti) (Ti-MOF) and FeOCl catalysts achieved only 50 and 92% of RhB and 50 and 37% of CIP, respectively. The higher catalytic activities of the Ti-MOF@FeOCl composite catalyst could be due to the electronic structure improvements, photoinduced charge separations, and charge transfer abilities in the catalyst system. The composite catalysts have also enhanced adsorption and visible light-responsive properties, allowing for efficient degradation. Furthermore, the electron paramagnetic resonance (EPR) signals, the reactive species trapping experiments, and Mott-Schottky (M - S) measurements revealed that the photogenerated superoxide radical (•O2-), hydroxyl radical (•OH), and holes (h+) played a vital role in the degradation process. The results also demonstrated that the Ti-MOF@FeOCl heterojunction composite catalysts could be a promising photo-Fenton catalyst system for the environmental remediation. Environmental implications The discharging of toxic contaminants such as organic dyes, antibiotics, and other emerging pollutants to the environment deteriorates the ecosystem. Specifically, the residues of organic pollutants recognized as a threat to ecosystem and a cause for carcinogenic effects. Among them, ciprofloxacin is one of antibiotics which has biological resistance, and metabolize partially in the human or animal bodies. It is also difficult to degrade ciprofloxacin completely with traditional treatment methods. Similarly, organic dyes are also toxic and a cause for carcinogenic effects. Therefore, effective degradation of organic pollutants such as RhB and ciprofloxacin with appropriate method is crucial.
Collapse
Affiliation(s)
- Osman Ahmed Zelekew
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China; Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Haileyesus Hatano Haitosa
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Lina He
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Hui Ma
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Junyi Cai
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Ziqi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China.
| |
Collapse
|
4
|
Shi J, Zhao T, Yang T, Pu K, Shi J, Zhou A, Li H, Wang S, Xue J. Z-scheme heterojunction photocatalyst formed by MOF-derived C-TiO 2 and Bi 2WO 6 for enhancing degradation of oxytetracycline: Mechanistic insights and toxicity evaluation in the presence of a single active species. J Colloid Interface Sci 2024; 665:41-59. [PMID: 38513407 DOI: 10.1016/j.jcis.2024.03.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
In the work, Bi2WO6/C-TiO2 photocatalyst was successfully synthesized for the first time by loading narrow bandgap semiconductor Bi2WO6 on MOF-derived carboxyl modified TiO2. The phase structure, morphology, photoelectric properties, surface chemical states and photocatalytic performance of the prepared photocatalysts were systematically investigated using various characterization tools. The degradation efficiency of oxytetracycline by 6BT Z-scheme heterojunction photocatalyst under visible light could reach 93.6 % within 100 min, which was related to the high light harvesting and effective separation and transfer of photo-generated carriers. Furthermore, the effects of various environmental factors in actual wastewater were further investigated, and the results showed that 6BT exhibited good adaptability, durability and resistance to interference. Unlike most works, the degradation system with a different single active species were designed and constructed based on their formation mechanism. In addition, for the first time, a positive study was conducted on the priority attack sites, intermediate products, and degradation pathways for the photocatalytic degradation of oxytetracycline by a single active species through HPLC-MS and Fukui index calculations. The toxicity changes of intermediate products produced in three different single active species oxidation systems were evaluated using toxicity assessment software tools (T.E.S.T.), Escherichia coli growth experiments, and wheat growth experiments. Among them, the intermediate products formed through O2- oxidation had the lowest toxicity and the main active sites it attacked were the 20C, 38O, 18C, 41O, and 55O atoms with high f+ values in the oxytetracycline molecular structure. This work provided the insight into the role of each active species in the degradation of antibiotics and offered new ideas for the design and synthesis of efficient and eco-friendly photocatalysts.
Collapse
Affiliation(s)
- Jianhui Shi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China.
| | - Ting Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Tiantian Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Kaikai Pu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Jiating Shi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Jinbo Xue
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| |
Collapse
|
5
|
Li J, Guo C, Niu Y, Cao X, Li J, Wang J. Construction of a Dual-Function Mo-ZIS@Ti for Photocatalytic Benzyl Alcohol Oxidation and Hydrogen Evolution Performance. Inorg Chem 2024; 63:9297-9306. [PMID: 38712902 DOI: 10.1021/acs.inorgchem.4c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The photocatalytic oxidation of benzyl alcohol and the simultaneous evolution of hydrogen from water are efficient dual-optimal routes. It is important to develop composite catalysts that combine redox properties and facilitate electron-hole separation and transport. Herein, the bimetallic-doped Mo-ZIS@Ti photocatalyst was designed and synthesized, and the selective oxidation of benzyl alcohol and hydrogen evolution by water splitting was realized at the same time. Under visible light irradiation, benzyl alcohol was completely converted with more than 99% selectivity for benzaldehyde, and the H2 production rate was 5.6 times higher than the initial ZIS. The exceptional catalytic performance was ascribed to utilizing Ti-MIL-125 as a precursor, wherein slowly releasing-doped Ti formed robust Ti-S bonds that quickly transfer electrons and reduce sites. Meanwhile, doping Mo effectively captures photogenerated holes and acts as active sites for oxidation reactions. Both experimental characterization and work function calculations demonstrate that the bimetallic synergism effectively modulates the electronic structure of ZIS, promotes the directional separation of electrons and holes, and significantly improves the photoactivity and stability of ZIS. This work contributes a route to obtain benzaldehyde and green hydrogen at the same time and also gives new insights for the construction and mechanism study of bimetallic-doping catalysts.
Collapse
Affiliation(s)
- Jianmin Li
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Changyan Guo
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Yanan Niu
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Xianglei Cao
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Jiang Li
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| |
Collapse
|
6
|
Yu C, Sun J, Xia C, Wang Y, Zhang J, Cai R, Cui J, Tan HH, Zhang Y, Wu Y. Coupling ultrafine TiO 2 within pyridinic-N enriched porous carbon towards high-rate and long-life sodium ion capacitors. J Colloid Interface Sci 2024; 660:934-942. [PMID: 38280286 DOI: 10.1016/j.jcis.2024.01.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/29/2024]
Abstract
Coupling TiO2 within N-doped porous carbon (NPC) is essential for enhancing its Na+ storage performance. However, the role of different N configurations in NPC in improving the electrochemical performance of TiO2 is currently unknown. In this study, melamine is deliberately incorporated as a pore-forming agent in the self-assembly process of metal organic framework precursors (NH2-MIL-125(Ti)). This intentional inclusion of melamine leads to the one-pot and in-situ formation of highly active edge-N, which is vital for the development of TiO2/NPC with exceptional reactivity. Electrochemical performance characterization and density functional theory (DFT) calculation indicate that the interaction between TiO2 and pyridinic-N enriched NPC can effectively narrow the bandgap of TiO2/NPC, thereby significantly improving electron/ion transfer. Additionally, the abundant mesoporous channels, high N content and oxygen vacancies also contribute to the fast reaction kinetics of TiO2/NPC. As a result, the optimized TiO2/NPC-M, with high proportion of pyridinic-N (44.1 %) and abundant mesoporous channels (97.8 %), delivers high specific capacity of 282.1 mA h-1 at 0.05 A g-1, superior rate capability of 177.3 mA h-1 at 10 A g-1, and prominent capacity retention of 89.3 % over 5000 cycles even under ultrahigh 10 A g-1. Furthermore, the TiO2/NPC-M//AC sodium ion capacitors (SIC) device achieves a high energy density of 136.7 Wh kg-1 at 200 W kg-1. This research not only offers fresh perspectives on the production of high-performance TiO2-based anodes, but also paves the way for customizing other active materials for energy storage and beyond.
Collapse
Affiliation(s)
- Cuiping Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianjian Sun
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenhong Xia
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Wang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China; Institute of Energy, Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230051, China.
| | - Jianfang Zhang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Rui Cai
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jiewu Cui
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hark Hoe Tan
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yong Zhang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China; China International S&T Cooperation Base for Advanced Energy and Environmental Materials & Anhui Provincial International S&T Cooperation Base for Advanced Energy Materials, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
7
|
Li W, Li J, Ma H, Xiong R, Fang P, Pan C, Wei J. Efficient spatial separation of charge carriers over Sv-ZnIn 2S 4/NH 2-MIL-88B(Fe) S-scheme heterojunctions for enhanced photocatalytic H 2 evolution and antibiotics removal performance. J Colloid Interface Sci 2024; 657:728-737. [PMID: 38071821 DOI: 10.1016/j.jcis.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
The exploration of highly efficient sunlight-assisted photocatalyst for photodegradation of organic contaminants or energy conversion is strongly encouraged. In this work, we designed a novel three-dimensional spindle-like Sv-ZIS@NMFe heterojunction made of amino functionalized NH2-MIL-88B(Fe) (NMFe) and ZnIn2S4 nanosheets with abundant sulfur vacancies (Sv-ZIS). The structural properties of NMFe materials, such as a clearly defined system of pores and cavities, were retained by the Sv-ZIS@NMFe composites. Additionally, the incorporation of sulfur vacancies, -NH2 functional groups, and well-matched energy level positions led to various synergistic effects that considerably enhanced internal electron transformation and migration, as well as improved adsorption performance. Consequently, under visible light irradiation, the optimized sample exhibited superior hydrogen production activity and tetracycline hydrochloride photodegradation performance. At last, density functional theory calculations was used to further elucidated the possible photoreactivity mechanism. This study demonstrates that the Sv-ZIS@NMFe heterojunction materials formed by ZnIn2S4 with suitable sulfur vacancies and amino functionalized Fe-MOFs have promising applications in photocatalysis.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jiajun Li
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hongyu Ma
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Rui Xiong
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Pengfei Fang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chunxu Pan
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jianhong Wei
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
He Q, Jin Q, Chen C, Wang J, Yuan S, Le S, Yang F, Yin Y, Du F, Xu H, Zhu C. Ternary dual S-scheme In 2O 3/SnIn 4S 8/CdS heterojunctions for boosted light-to-hydrogen conversion. J Colloid Interface Sci 2023; 650:416-425. [PMID: 37418892 DOI: 10.1016/j.jcis.2023.06.211] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Developing artificial S-scheme systems with highly active catalysts is significant to long-term solar-to-hydrogen conversion. Herein, CdS nanodots-modified hierarchical In2O3/SnIn4S8 hollow nanotubes were synthesized by an oil bath method for water splitting. Benefiting from the synergy among the hollow structure, tiny size effect, matched energy level positions, and abundant coupling heterointerfaces, the optimized nanohybrid attains an impressive photocatalytic hydrogen evolution rate of 110.4 µmol/h, and the corresponding apparent quantum yield reaches 9.7% at 420 nm. On In2O3/SnIn4S8/CdS interfaces, the migration of photoinduced electrons from both CdS and In2O3 to SnIn4S8via intense electronic interactions contributes to the ternary dual S-scheme modes, which are beneficial to promote faster spatial charge separation, deliver better visible light-harvesting ability, and provide more reaction active sites with high potentials. This work reveals protocols for rational design of on-demand S-scheme heterojunctions for sustainably converting solar energy into hydrogen in the absence of precious metals.
Collapse
Affiliation(s)
- Qiuying He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qijie Jin
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Jin Wang
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Saisai Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Shukun Le
- Chemical Engineering College, Inner Mongolia University of Technology, Huhhot, 010051, China.
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yu Yin
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Feng Du
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Haitao Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Chengzhang Zhu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
9
|
Wang D, Zhan E, Wang S, Liu X, Yan G, Chen L, Wang X. Surface Coordination of Pd/ZnIn 2S 4 toward Enhanced Photocatalytic Activity for Pyridine Denitrification. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010282. [PMID: 36615476 PMCID: PMC9822349 DOI: 10.3390/molecules28010282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
New surface coordination photocatalytic systems that are inspired by natural photosynthesis have significant potential to boost fuel denitrification. Despite this, the direct synthesis of efficient surface coordination photocatalysts remains a major challenge. Herein, it is verified that a coordination photocatalyst can be constructed by coupling Pd and CTAB-modified ZnIn2S4 semiconductors. The optimized Pd/ZnIn2S4 showed a superior degradation rate of 81% for fuel denitrification within 240 min, which was 2.25 times higher than that of ZnIn2S4. From the in situ FTIR and XPS spectra of 1% Pd/ZnIn2S4 before and after pyridine adsorption, we find that pyridine can be selectively adsorbed and form Zn⋅⋅⋅C-N or In⋅⋅⋅C-N on the surface of Pd/ZnIn2S4. Meanwhile, the superior electrical conductivity of Pd can be combined with ZnIn2S4 to promote photocatalytic denitrification. This work also explains the surface/interface coordination effect of metal/nanosheets at the molecular level, playing an important role in photocatalytic fuel denitrification.
Collapse
Affiliation(s)
- Deling Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Erda Zhan
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Shihui Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Xiyao Liu
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Guiyang Yan
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
- Correspondence: (G.Y.); (L.C.); (X.W.); Tel.: +86-13809566652 (G.Y.); +86-156959097359 (L.C.); +86-13600887951 (X.W.)
| | - Lu Chen
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
- Correspondence: (G.Y.); (L.C.); (X.W.); Tel.: +86-13809566652 (G.Y.); +86-156959097359 (L.C.); +86-13600887951 (X.W.)
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
- Correspondence: (G.Y.); (L.C.); (X.W.); Tel.: +86-13809566652 (G.Y.); +86-156959097359 (L.C.); +86-13600887951 (X.W.)
| |
Collapse
|
10
|
In-situ controlled growth of (102) and (311) crystal plane of polymorphous ZnIn2S4 assisted by inorganic anions for enhanced photocatalytic properties. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Abbasnia A, Zarei A, Yeganeh M, Sobhi HR, Gholami M, Esrafili A. Removal of tetracycline antibiotics by adsorption and photocatalytic-degradation processes in aqueous solutions using metal organic frameworks (MOFs): A systematic review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Li M, Ma Y, Jiang J, Li T, Zhang C, Han Z, Dong S. Enhanced photo-Fenton degradation of tetracycline hydrochloride by 2, 5-dioxido-1, 4-benzenedicarboxylate-functionalized MIL-100(Fe). ENVIRONMENTAL RESEARCH 2022; 212:113399. [PMID: 35561828 DOI: 10.1016/j.envres.2022.113399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Heterogeneous photo-Fenton technology has drawn tremendous attention for removal of recalcitrant pollutants. Fe-based metal-organic frameworks (Fe-MOFs) are regarded to be superior candidates in wastewater treatment technology. However, the central metal sites of the MOFs are coordinated with the linkers, which reduces active site exposure and decelerates H2O2 activation. In this study, a series of 2, 5-dioxido-1, 4-benzenedicarboxylate (H2DOBDC)-functionalized MIL-100(Fe) with enhanced degradation performance was successfully constructed via solvothermal strategy. The modified MIL-100(Fe) displayed an improvement in photo-Fenton behaviors. The photocatalytic rate constant of optimized MIL-100(Fe)-1/2/3 are 2.3, 3.6 and 4.4 times higher compared with the original MIL-100(Fe). The introduced H2DOBDC accelerates the separation and transfer in photo-induced charges and promotes Fe(II)/Fe(III) cycle, thus improving the performance. •OH and •O2- are main reactive radicals in tetracycline (TCH) degradation. Dealkylation, hydroxylation, dehydration and dealdehyding are the main pathways for TCH degradation.
Collapse
Affiliation(s)
- Mingyu Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, Jilin, China
| | - Yuhan Ma
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, Jilin, China
| | - Jingjing Jiang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, Jilin, China
| | - Tianren Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, Jilin, China
| | - Chongjun Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhonghui Han
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, Jilin, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
13
|
Wang J, Yu Z, Zhu X, Xiao X, Pang Y, Tan Q, Liu Y. A super-hydrophilic NH 2-MIL-125 composite film with dopamine-modified graphene oxide is used for water treatment. NEW J CHEM 2022. [DOI: 10.1039/d2nj02181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is always concerning about how to remove oil–water emulsions and dyes simultaneously and how to find a suitable separation film.
Collapse
Affiliation(s)
- Juan Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Zongxue Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Southwest Petr Univ, Res Inst Ind Hazardous Waste Disposal & Resource, Chengdu 610500, Sichuan, P. R. China
| | - Ximei Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Xuehan Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yao Pang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - QiuYue Tan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Southwest Petr Univ, Res Inst Ind Hazardous Waste Disposal & Resource, Chengdu 610500, Sichuan, P. R. China
| |
Collapse
|