1
|
Freitas F, Solera K, Ferreira LF, Sheng LY, Moreno MIC, Jacinto MJ, Battirola LD, Andrade RLTD. Use of Salvinia biloba Raddi biomass in the remediation of solutions contaminated by nanoparticles and silver ions. BRAZ J BIOL 2025; 85:e283123. [PMID: 40396821 DOI: 10.1590/1519-6984.283123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/29/2025] [Indexed: 05/22/2025] Open
Abstract
The contamination of water resources by nanoparticles and metallic ions is a growing problem in the world, considering the increased use of these materials in various human activities. This study evaluated the use of biomass from the aquatic macrophyte Salvinia biloba as a biosorbent for nanoparticles (Ag0NPs) and silver ions (Ag+) in aqueous solution, for environmental remediation purposes. The adsorption system was of the batch reactor type, varying the adsorbate concentration between 0.5 and 8.0 mg L-1 and the contact time between 5 and 1440 minutes. The mechanism of contaminant removal from the solution was analyzed using kinetic and isothermal models. Adsorption equilibrium occurred within 60 minutes. The removal efficiency reached up to 62.0% for the Ag0NPs. The equilibrium data showed greater correlation with the pseudo-first order kinetic model and with the Freundlich model for the Ag0NPs isotherm and Sips for the Ag+ isotherm. Biomass has surface groups of great relevance for the metal adsorption process. The results indicated a heterogeneous adsorption process with a predominance of surface interactions and favorable adsorption for both adsorbates. The study show that S. biloba biomass can be used as a biosorbent for the removal of Ag0NPs e Ag+ in the solution, emphasizing its potential use in the remediation of contaminated water.
Collapse
Affiliation(s)
- F Freitas
- Universidade Federal de Mato Grosso, Programa de Pós-graduação em Biotecnologia e Biodiversidade, Sinop, MT, Brasil
- Universidade Federal de Mato Grosso, Programa de Pós-graduação em Ciências Ambientais, Sinop, MT, Brasil
| | - K Solera
- Universidade Federal de Mato Grosso, Programa de Pós-graduação em Biotecnologia e Biodiversidade, Sinop, MT, Brasil
| | - L F Ferreira
- Universidade Federal de Mato Grosso, Instituto de Química, Cuiabá, MT, Brasil
| | - L Y Sheng
- Universidade Federal de Mato Grosso, Instituto de Ciências Naturais, Humanas e Sociais, Sinop, MT, Brasil
| | - M I C Moreno
- Universidade Federal de Catalão, Instituto de Biotecnologia, Departamento de Ciências Biológicas, Catalão, GO, Brasil
| | - M J Jacinto
- Universidade Federal de Mato Grosso, Instituto de Química, Cuiabá, MT, Brasil
| | - L D Battirola
- Universidade Federal de Mato Grosso, Programa de Pós-graduação em Biotecnologia e Biodiversidade, Sinop, MT, Brasil
- Universidade Federal de Mato Grosso, Faculdade de Engenharia Florestal, Cuiabá, MT, Brasil
| | - R L T de Andrade
- Universidade Federal de Mato Grosso, Programa de Pós-graduação em Biotecnologia e Biodiversidade, Sinop, MT, Brasil
- Universidade Federal de Mato Grosso, Instituto de Ciências Naturais, Humanas e Sociais, Sinop, MT, Brasil
| |
Collapse
|
2
|
Taghilou S, Nakhjirgan P, Esrafili A, Dehghanifard E, Kermani M, Kakavandi B, Pelalak R. Performance, progress, and mechanism of g-C 3N 4-based photocatalysts in the degradation of pesticides: A systematic review. CHEMOSPHERE 2024; 368:143667. [PMID: 39515531 DOI: 10.1016/j.chemosphere.2024.143667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
In the modern world, humans are exposed to an enormous number of pesticides discharged into the environment. Exposure to pesticides causes many health disorders, such as cancer, mental retardation, and endocrine disruption. Therefore, it is a priority to eliminate pesticides from contaminated water before discharge into aquatic environments. Conventional treatment systems do not efficiently accomplish pesticide remediation. Applying graphitic carbon nitride (g-C3N4; GCN)-based materials as highly efficient and low-cost catalysts can be one of the best methods for adequately removing pesticides. This study aims to review the most relevant studies on the use of GCN-based photocatalytic processes for degrading well-known pesticides in aqueous solutions. Thus, in the current state-of-the-art review, an overview is focused not only on how to use GCN-based photocatalysts towards the degradation of pesticides, but also discusses the impact of important operational factors like solution pH, mixture temperature, catalyst dosage, pesticide concentration, photocatalyst morphology, light intensity, reaction time, oxidant concentration, and coexisting anions. In this context, four common pesticides were reviewed, namely 2,4-dichlorophenoxyacetic acid (2,4-D), malathion (MTN), diazinon (DZN), and atrazine (ATZ). Following the screening procedure, 55 full-text papers were chosen, of which the most were published in 2023 (n = 10), and the most publications focused on the elimination of ATZ (n = 33). Among the GCN modification methods, integrating GCN with other photocatalysts showed the best performance in enhancing photocatalytic activity towards the degradation of pesticides. All GCN-based photocatalysts showed a degradation efficiency of > 90% for pesticides under optimum operating conditions. This review provides a detailed summary of different GCN modification methods to select the most promising and cost-effective photocatalyst degradation of pesticides.
Collapse
Affiliation(s)
- Samaneh Taghilou
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Pegah Nakhjirgan
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Emad Dehghanifard
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran.
| | - Babak Kakavandi
- Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran.
| | - Rasool Pelalak
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
3
|
Shahzad A, Zahra A, Li HY, Qin M, Wu H, Wen MQ, Ali M, Iqbal Y, Xie SH, Sattar S, Zafar S. Modern perspectives of heavy metals alleviation from oil contaminated soil: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116698. [PMID: 38991309 DOI: 10.1016/j.ecoenv.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Heavy metal poisoning of soil from oil spills causes serious environmental problems worldwide. Various causes and effects of heavy metal pollution in the soil environment are discussed in this article. In addition, this study explores new approaches to cleaning up soil that has been contaminated with heavy metals as a result of oil spills. Furthermore, it provides a thorough analysis of recent developments in remediation methods, such as novel nano-based approaches, chemical amendments, bioremediation, and phytoremediation. The objective of this review is to provide a comprehensive overview of the removal of heavy metals from oil-contaminated soils. This review emphasizes on the integration of various approaches and the development of hybrid approaches that combine various remediation techniques in a synergistic way to improve sustainability and efficacy. The study places a strong emphasis on each remediation strategy that can be applied in the real-world circumstances while critically evaluating its effectiveness, drawbacks, and environmental repercussions. Additionally, it discusses the processes that reduce heavy metal toxicity and improve soil health, taking into account elements like interactions between plants and microbes, bioavailability, and pollutant uptake pathways. Furthermore, the current study suggests that more research and development is needed in this area, particularly to overcome current barriers, improve our understanding of underlying mechanisms, and investigate cutting-edge ideas that have the potential to completely transform the heavy metal clean up industry.
Collapse
Affiliation(s)
- Asim Shahzad
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Atiqa Zahra
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, AJK, Pakistan.
| | - Hao Yang Li
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Mingzhou Qin
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Hao Wu
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Mei Qi Wen
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Mushtaque Ali
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China.
| | - Younas Iqbal
- National Demonstration Centre for Environmental and Planning, College of Geography and Environmental Sciences, Henan University, Kaifeng, China.
| | - Shao Hua Xie
- College of Geography and Environmental Sciences, Henan University Kaifeng, China.
| | - Shehla Sattar
- Department of environmental sciences, University of Swabi, Pakistan.
| | - Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab 54770, Pakistan.
| |
Collapse
|
4
|
Dubey S, Virmani T, Yadav SK, Sharma A, Kumar G, Alhalmi A. Breaking Barriers in Eco-Friendly Synthesis of Plant-Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations. JOURNAL OF NANOMATERIALS 2024; 2024:1-48. [DOI: 10.1155/2024/9914079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanotechnology has emerged as a promising field in pharmaceutical research, involving producing unique nanoscale materials with sizes up to 100 nm via physiochemical and biological approaches. Nowadays more emphasis has been given to eco-friendly techniques for developing nanomaterials to enhance their biological applications and minimize health and environmental risks. With the help of green nanotechnology, a wide range of green metal, metal oxide, and bimetallic nanoparticles with distinct chemical compositions, sizes, and morphologies have been manufactured which are safe, economical, and environment friendly. Due to their biocompatibility and vast potential in biomedical (antibacterial, anticancer, antiviral, analgesic, anticoagulant, biofilm inhibitory activity) and in other fields such as (nanofertilizers, fermentative, food, and bioethanol production, construction field), green metal nanoparticles have garnered significant interest worldwide. The metal precursors combined with natural extracts such as plants, algae, fungi, and bacteria to get potent novel metal, metal oxide, and bimetallic nanoparticles such as Ag, Au, Co, Cu, Fe, Zr, Zn, Ni, Pt, Mg, Ti, Pd, Cd, Bi2O3, CeO2, Co3O4, CoFe2O4, CuO, Fe2O3, MgO, NiO, TiO2, ZnO, ZrO2, Ag-Au, Ag-Cr, Ag-Cu, Ag-Zn, Ag-CeO2, Ag-CuO, Ag-SeO2, Ag-TiO2, Ag-ZnO, Cu-Ag, Cu-Mg, Cu-Ni, Pd-Pt, Pt-Ag, ZnO-CuO, ZnO-SeO, ZnO-Se, Se-Zr, and Co-Bi2O3. These plant-mediated green nanoparticles possess excellent antibacterial and anticancer activity when tested against several microorganisms and cancer cell lines. Plants contain essential phytoconstituents (polyphenols, flavonoids, terpenoids, glycosides, alkaloids, etc.) compared to other natural sources (bacteria, fungi, and algae) in higher concentration that play a vital role in the development of green metal, metal oxide, and bimetallic nanoparticles because these plant-phytoconstituents act as a reducing, stabilizing, and capping agent and helps in the development of green nanoparticles. After concluding all these findings, this review has been designed for the first time in such a way that it imparts satisfactory knowledge about the antibacterial and anticancer activity of plant-mediated green metal, metal oxide, and bimetallic nanoparticles together, along with antibacterial and anticancer mechanisms. Additionally, it provides information about characterization techniques (UV–vis, FT-IR, DLS, XRD, SEM, TEM, BET, AFM) employed for plant-mediated nanoparticles, biomedical applications, and their role in other industries. Hence, this review provides information about the antibacterial and anticancer activity of various types of plant-mediated green metal, metal oxide, and bimetallic nanoparticles and their versatile application in diverse fields which is not covered in other pieces of literature.
Collapse
Affiliation(s)
- Swati Dubey
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | | | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
5
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
6
|
Aricov L, Precupas A, Tudose M, Baltag D, Trică B, Sandu R, Leonties AR. Trametes versicolor laccase activity modulated by the interaction with gold nanoparticles. ENVIRONMENTAL RESEARCH 2023; 237:116920. [PMID: 37597828 DOI: 10.1016/j.envres.2023.116920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
In this study, the impact of gold nanoparticles (AuNPs) on the structure and activity of laccase from Trametes versicolor (Lc) was described. Fluorescence experiments revealed that AuNPs efficiently quench Lc's tryptophan fluorescence by a static and dynamic process. By using differential scanning microcalorimetry and circular dichroism spectroscopy, it was determined how the concentration of nanoparticles and the composition of the medium affected the secondary structure of Lc. The data revealed that upon binding with AuNPs, conformational changes take place mainly in presence of high amounts of nanoparticles. The complex kinetic analysis unveiled the Lc activity enhancement at low concentrations of AuNPs as opposed to the concentrated regime, where it can be reduced by up to 55%. The Michaelis-Menten tests highlighted that the activity of the biocatalyst is closely related to the concentration of AuNPs, while the Selwyn analysis demonstrated that even in a concentrated regime of Lc it is not deactivated regardless of the amount of AuNPs added. The thermal parameters improved by twofold in the presence of low AuNPs concentration, whereas the activation energy increased with AuNPs content, implying that not all collisions are beneficial to the enzyme structure. The effect of AuNPs on the decomposition of a recalcitrant dye (naphthol green B, NG) by Lc was also evaluated, and the Michaelis-Menten model revealed that only the high AuNPs content influenced negatively the Lc activity. The isothermal titration calorimetry revealed that hydrogen bonds are the main intermolecular forces between Lc and AuNPs, while electrostatic interactions are responsible for NG adsorption to AuNPs. The results of the docking analysis show the binding of NG near the copper T1 site of Lc with hydrogen bonds, electrostatic and hydrophobic interactions. The findings of this work provide important knowledge for laccase-based bio-nanoconjugates and their use in the field of environmental remediation.
Collapse
Affiliation(s)
- Ludmila Aricov
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Aurica Precupas
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania.
| | - Madalina Tudose
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Dragos Baltag
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Elisabeta 4-12, 030018, Bucharest, Romania; National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Romica Sandu
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Anca Ruxandra Leonties
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania.
| |
Collapse
|
7
|
Karsli B, Uras IS, Konuklugil B, Demirbas A. Synthesis of Axinyssa digitata Extract Directed Hybrid Nanoflower and Investigation of Its Antimicrobial Activity. IEEE Trans Nanobioscience 2023; 22:523-528. [PMID: 36269917 DOI: 10.1109/tnb.2022.3216355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
First time in this study, the antibacterial effects of Axinyssa digitata sponge extracts and Axinyssa digitata-based cupper hybrid nanoflowers (Cu hNFs) were evaluated. Herein, hybrid nanoflowers (Cu hNFs) were produced by combining Axinyssa digitata sponge extract with Cu2+ ions in Phosphate-buffered saline (PBS) (at pH 7.4) at room temperature for three days using green synthesis method. The shape and size of hNFs were evaluated using scanning electron microscope (SEM) images. Energy dispersive X-ray spectroscopy (EDX) mapping was used to determine the presence of Cu metals and other components. X-ray diffraction (XRD) is a non-destructive analysis method that was used to determine of the crystallographic properties of materials and the phases they contain. Fourier-transform infrared spectroscopy (FT-IR) peaks were used to discuss the presence of functional groups that played a key role in the synthesis. The Cu-hNFs had antimicrobial activity against selected microorganisms. This research is expected to provide knowledge on hNFs synthesis and antimicrobial activity application investigations using Axinyssa digitata rather than biomolecules obtained through costly and time-consuming methods.
Collapse
|
8
|
Shanmuganathan R, Sibtain Kadri M, Mathimani T, Hoang Le Q, Pugazhendhi A. Recent innovations and challenges in the eradication of emerging contaminants from aquatic systems. CHEMOSPHERE 2023; 332:138812. [PMID: 37127197 DOI: 10.1016/j.chemosphere.2023.138812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Presence of emerging pollutants (EPs), aka Micropollutants (MPs) in the freshwater environments is a severe threat to the environment and human beings. They include pharmaceuticals, insecticides, industrial chemicals, natural hormones, and personal care items and the pollutants are mostly present in wastewater generated from urbanization and increased industrial growth. Even concentrations as low as ngL-1 or mgL-1 have proven ecologically lethal to aquatic biota. For several years, the biodegradation of various Micropollutants (MPs) in aquatic ecosystems has been a significant area of research worldwide, with many chemical compounds being discovered in various water bodies. As aquatic biota spends most of their formative phases in polluted water, the impacts on aquatic biota are obvious, indicating that the environmental danger is substantial. In contrast, the impact of these contaminants on aquatic creatures and freshwater consumption is more subtle and manifests directly when disrupting the endocrine system. Research and development activities are expected to enable the development of ecologically sustainable, cost-effective, and efficient treatments for practical systems in the near future. Therefore, this review aims to understand recent emerging pollutants discovered and the available treatment technologies and suggest an innovative and cost-effective method to treat these EPs, which is sustainable and follows the circular bioeconomy.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, 804201, Taiwan
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
9
|
Rizwan K, Bilal M, Slimani Y, Show PL, Rtimi S, Roy A, Iqbal HM. Hydrogen-based sono-hybrid catalytic degradation and mitigation of industrially-originated dye-based pollutants. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2023; 48:6597-6612. [DOI: 10.1016/j.ijhydene.2022.03.188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Rind IK, Tuzen M, Sarı A, Lanjwani MF, Memon N, Saleh TA. Synthesis of TiO2 nanoparticles loaded on Magnetite nanoparticles modified Kaolinite clay (KC) and their efficiency for As(III) adsorption. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Uzunoğlu D, Özer A. Facile Synthesis of Magnetic Iron-Based Nanoparticles from the Leach Solution of Hyperaccumulator Plant Pinus brutia for the Antibacterial Activity and Colorimetric Detection of Ascorbic Acid. ACS APPLIED BIO MATERIALS 2022; 5:5465-5476. [PMID: 36282869 PMCID: PMC9682526 DOI: 10.1021/acsabm.2c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has been well known that metallic nanoparticles with striking properties possess wide application prospects in the processes of colorimetric detection, catalysis, disease diagnosis and treatment, energy, wastewater treatment, remediation, and antibacterial activity in recent years. Herein, iron-based nanoparticles (FeNPs), metallic nanoparticles, were synthesized via a facile chemical reduction method using a hyperaccumulator plant. Also, their use in antibacterial activity applications and colorimetric ascorbic acid (AA) detection was investigated. It was observed that FeNPs presented high antibacterial potency against Gram-positive bacteria of Listeria monocytogenes and Staphylococcus aureus and also Gram-negative bacteria of Escherichia coli(O157: H7), E. coli(ATCC 25922), Salmonella enteritidis, and Salmonella typhimurium. Moreover, it was found that FeNPs exhibited superior peroxidase-like activity to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue color product, oxidized TMB (oxTMB), in the presence of H2O2. The colorimetric AA detection could be carried out by making the solution color lighter owing to the antioxidant property of AA. The quantitative detection of AA could be performed simply, selectively, and sensitively with FeNPs with a detection limit (LOD) of 0.5462 μM in a linear range of 30-200 μM.
Collapse
|
12
|
Zhang K, Wei X, Ling C, Deng Z, Zhang X. Revisiting regeneration performance and mechanism of anion exchanger-supported nano-hydrated zirconium oxides for cyclic water defluoridation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Mujahid MH, Upadhyay TK, Khan F, Pandey P, Park MN, Sharangi AB, Saeed M, Upadhye VJ, Kim B. Metallic and metal oxide-derived nanohybrid as a tool for biomedical applications. Biomed Pharmacother 2022; 155:113791. [DOI: 10.1016/j.biopha.2022.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/02/2022] Open
|
14
|
Sharma P, Singh SP, Iqbal HMN, Tong YW. Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. ENVIRONMENTAL RESEARCH 2022; 211:113102. [PMID: 35300964 DOI: 10.1016/j.envres.2022.113102] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023]
Abstract
Non-degradable pollutants have emerged as a result of industrialization, population growth, and lifestyle changes, endangering human health and the environment. Bioremediation is the process of clearing hazardous contaminants with the help of microorganisms, and cost-effective approach. The low-cost and environmentally acceptable approach to removing environmental pollutants from ecosystems is microbial bioremediation. However, to execute these different bioremediation approaches successfully, this is imperative to have a complete understanding of the variables impacting the development, metabolism, dynamics, and native microbial communities' activity in polluted areas. The emergence of new technologies like next-generation sequencing, protein and metabolic profiling, and advanced bioinformatic tools have provided critical insights into microbial communities and underlying mechanisms in environmental contaminant bioremediation. These omics approaches are meta-genomics, meta-transcriptomics, meta-proteomics, and metabolomics. Moreover, the advancements in these technologies have greatly aided in determining the effectiveness and implementing microbiological bioremediation approaches. At Environmental Protection Agency (EPA)-The government placed special emphasis on exploring how molecular and "omic" technologies may be used to determine the nature, behavior, and functions of the intrinsic microbial communities present at pollution containment systems. Several omics techniques are unquestionably more informative and valuable in elucidating the mechanism of the process and identifying the essential player's involved enzymes and their regulatory elements. This review provides an overview and description of the omics platforms that have been described in recent reports on omics approaches in bioremediation and that demonstrate the effectiveness of integrated omics approaches and their novel future use.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur-208001, India.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
15
|
Fei L, Bilal M, Qamar SA, Imran HM, Riasat A, Jahangeer M, Ghafoor M, Ali N, Iqbal HMN. Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. ENVIRONMENTAL RESEARCH 2022; 211:113060. [PMID: 35283076 DOI: 10.1016/j.envres.2022.113060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023]
Abstract
The absence of novel and efficient methods for the elimination of persistent organic pollutants (POPs) from the environment is a serious concern in the society. The pollutants release into the atmosphere by means of industrialization and urbanization is a massive global hazard. Although, the eco-toxicity associated with nanotechnology is still being debated, nano-remediation is a potentially developing tool for dealing with contamination of the environment, particularly POPs. Nano-remediation is a novel strategy to the safe and long-term removal of POPs. This detailed review article presents an important perspective on latest innovations and future views of nano-remediation methods used for environmental decontamination, like nano-photocatalysis and nanosensing. Different kinds of nanomaterials including nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), magnetic and metallic nanoparticles, silica (SiO2) nanoparticles, graphene oxide, covalent organic frameworks (COFs), and metal organic frameworks (MOFs) have been summarized for the mitigation of POPs. Furthermore, the long-term viability of nano-remediation strategies for dealing with legacy contamination was considered, with a particular emphasis on environmental and health implications. The assessment goes on to discuss the environmental consequences of nanotechnology and offers consensual recommendations on how to employ nanotechnology for a greater present and a more prosperous future.
Collapse
Affiliation(s)
- Liu Fei
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | | | - Areej Riasat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Jahangeer
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Misbah Ghafoor
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
16
|
Ghotekar S, Pansambal S, Lin KYA, Pore D, Oza R. Recent Advances in Synthesis of CeVO4 Nanoparticles and Their Potential Scaffold for Photocatalytic Applications. Top Catal 2022. [DOI: 10.1007/s11244-022-01630-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Atalah J, Espina G, Blamey L, Muñoz-Ibacache SA, Blamey JM. Advantages of Using Extremophilic Bacteria for the Biosynthesis of Metallic Nanoparticles and Its Potential for Rare Earth Element Recovery. Front Microbiol 2022; 13:855077. [PMID: 35387087 PMCID: PMC8977859 DOI: 10.3389/fmicb.2022.855077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
The exceptional potential for application that metallic nanoparticles (MeNPs) have shown, has steadily increased their demand in many different scientific and technological areas, including the biomedical and pharmaceutical industry, bioremediation, chemical synthesis, among others. To face the current challenge for transitioning toward more sustainable and ecological production methods, bacterial biosynthesis of MeNPs, especially from extremophilic microorganisms, emerges as a suitable alternative with intrinsic added benefits like improved stability and biocompatibility. Currently, biogenic nanoparticles of different relevant metals have been successfully achieved using different bacterial strains. However, information about biogenic nanoparticles from rare earth elements (REEs) is very scarce, in spite of their great importance and potential. This mini review discusses the current understanding of metallic nanoparticle biosynthesis by extremophilic bacteria, highlighting the relevance of searching for bacterial species that are able to biosynthesize RRE nanoparticles.
Collapse
Affiliation(s)
| | | | | | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
18
|
Stefan M, Leostean C, Toloman D, Popa A, Pana O, Barbu-Tudoran L. Spectroscopic and Morpho-Structural Characterization of Copper Indium Disulfide–Zinc Oxide Nanocomposites with Photocatalytic Properties. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2043887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- M. Stefan
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - C. Leostean
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - D. Toloman
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - A. Popa
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - O. Pana
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - L. Barbu-Tudoran
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Electron Microscopy Center, Faculty of Biology and Geology, “Babes-Bolyai” University, Cluj-Napoca, Romania
| |
Collapse
|