1
|
Liao L, Chen H, He C, Dodbiba G, Fujita T. Boron Removal in Aqueous Solutions Using Adsorption with Sugarcane Bagasse Biochar and Ammonia Nanobubbles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4895. [PMID: 39410467 PMCID: PMC11477493 DOI: 10.3390/ma17194895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
Boron is a naturally occurring trace chemical element. High concentrations of boron in nature can adversely affect biological systems and cause severe pollution to the ecological environment. We examined a method to effectively remove boron ions from water systems using sugarcane bagasse biochar from agricultural waste with NH3 nanobubbles (10% NH3 and 90% N2). We studied the effects of the boron solution concentration, pH, and adsorption time on the adsorption of boron by the modified biochar. At the same time, the possibility of using magnesium chloride and NH3 nanobubbles to enhance the adsorption capacity of the biochar was explored. The carbonization temperature of sugarcane bagasse was investigated using thermogravimetric analysis. It was characterized using XRD, SEM, and BET analysis. The boron adsorption results showed that, under alkaline conditions above pH 9, the adsorption capacity of the positively charged modified biochar was improved under the double-layer effect of magnesium ions and NH3 nanobubbles, because the boron existed in the form of negatively charged borate B(OH)4- anion groups. Moreover, cations on the NH3 nanobubble could adsorb the boron. When the NH3 nanobubbles with boron and the modified biochar with boron could coagulate each other, the boron was removed to a significant extent. Extended DLVO theory was adopted to model the interaction between the NH3 nanobubble and modified biochar. The boron adsorption capacity was 36 mg/g at room temperature according to a Langmuir adsorption isotherm. The adsorbed boron was investigated using FT-IR and XPS analysis. The ammonia could be removed using zeolite molecular sieves and heating. Boron in an aqueous solution can be removed via adsorption with modified biochar with NH3 nanobubbles and MgCl2 addition.
Collapse
Affiliation(s)
- Lianying Liao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (L.L.); (H.C.)
| | - Hao Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (L.L.); (H.C.)
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Chunlin He
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (L.L.); (H.C.)
| | - Gjergj Dodbiba
- Graduate School of Engineering, The University of Tokyo, Bunkyo 113-8656, Japan
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (L.L.); (H.C.)
| |
Collapse
|
2
|
de Azevedo JCV, de Urzedo APFM, da Luz Mesquita P, da Cunha Filho RG, Baston EP, Samanamud GL, Naves LLR, Naves FL. Recent advances in boron removal in aqueous media. An approach to the adsorption process and process optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12207-12228. [PMID: 38225497 DOI: 10.1007/s11356-024-31882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
The numerous oxidation states of the element boron bring great challenges in containing its contamination in receptor bodies. This scenario increases significantly due to the widespread use of boron compounds in various industries in recent years. For this reason, the removal of this contaminant is receiving worldwide attention. Although adsorption is a promising method in boron removal, finding suitable adsorbents, that is, those with high efficiency, and feasible remains a constant challenge. Hence, this review presents the boron removal methods in comparison to costs of adsorbents, reaction mechanisms, economic viability, continuous bed application, and regeneration capacity. In addition, the approach of multivariate algorithms in the solution of multiobjective problems can enable the optimized conditions of dosage of adsorbents and coagulants, pH, and initial concentration of boron. Therefore, this review sought to comprehensively and critically demonstrate strategic issues that may guide the choice of method and adsorbent or coagulant material in future research for bench and industrial scale boron removal.
Collapse
Affiliation(s)
- Jéssica Carolaine Vieira de Azevedo
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Ana Paula Fonseca Maia de Urzedo
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Patrícia da Luz Mesquita
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Roberto Guimarães da Cunha Filho
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Eduardo Prado Baston
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Gisella Lamas Samanamud
- Department of Chemical and Materials Engineering, University of Kentucky - Paducah extended campus, Paducah, KY, 42001, USA
| | - Luzia Lima Rezende Naves
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Fabiano Luiz Naves
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil.
| |
Collapse
|
3
|
Nagarajan D, Lee DJ, Varjani S, Lam SS, Allakhverdiev SI, Chang JS. Microalgae-based wastewater treatment - Microalgae-bacteria consortia, multi-omics approaches and algal stress response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157110. [PMID: 35787906 DOI: 10.1016/j.scitotenv.2022.157110] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Sustainable environmental management is one of the important aspects of sustainable development goals. Increasing amounts of wastewaters (WW) from exponential economic growth is a major challenge, and conventional treatment methods entail a huge carbon footprint in terms of energy use and GHG emissions. Microalgae-based WW treatment is a potential candidate for sustainable WW treatment. The nutrients which are otherwise unutilized in the conventional processes are recovered in the beneficial microalgal biomass. This review presents comprehensive information regarding the potential of microalgae as sustainable bioremediation agents. Microalgae-bacterial consortia play a critical role in synergistic nutrient removal, supported by the complex nutritional and metabolite exchange between microalgae and the associated bacteria. Design of effective microalgae-bacteria consortia either by screening or by recent technologies such as synthetic biology approaches are highly required for efficient WW treatment. Furthermore, this review discusses the crucial research gap in microalgal WW treatment - the application of a multi-omics platform for understanding microalgal response towards WW conditions and the design of effective microalgal or microalgae-bacteria consortia based on genetic information. While metagenomics helps in the identification and monitoring of the microbial community throughout the treatment process, transcriptomics, proteomics and metabolomics aid in studying the algal cellular response towards the nutrients and pollutants in WW. It has been established that the integration of microalgal processes into conventional WW treatment systems is feasible. In this direction, future research directions for microalgal WW treatment emphasize the need for identifying the niche in WW treatment, while highlighting the pilot sale plants in existence. Microalgae-based WW treatment could be a potential phase in the waste hierarchy of circular economy and sustainability, considering WWs are a rich secondary source of finite resources such as nitrogen and phosphorus.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|