1
|
Li T, Cheng F, Du X, Liang J, Zhou L. Efficient removal of metals and resource recovery from acid mine drainage by modified chemical mineralization coupling sodium sulfide precipitation. J Environ Sci (China) 2025; 156:399-407. [PMID: 40412941 DOI: 10.1016/j.jes.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/13/2024] [Accepted: 10/19/2024] [Indexed: 05/27/2025]
Abstract
Acid mine drainage (AMD) seriously pollutes the environment due to its high acidity and a variety of heavy metals. Although lime neutralization has traditionally been employed to treat AMD, it comes with disadvantages, such as the large quantity of lime required and the generation of substantial amounts of neutralized sludge. Hence, we propose a modified chemical mineralization coupled with sodium sulfide precipitation to simultaneously recover metals from AMD and neutralize acidity. The modified chemical mineralization process effectively removed total iron (TFe) and SO42- through chemically forming schwertmannite (Sch). By regulating temperature and H2O2 addition mode, the hydrolysis of Fe3+ and SO42- in chemical mineralization was significantly enhanced, resulting in a high yield of Sch. Subsequent introduction of sodium sulfide to already-treated AMD using modified chemical mineralization could harvest or recover other valuable metals other than Fe and maintain a neutral pH of the final effluent. The metal levels in the sulphide precipitation reached as high as 17.9 mg/g, which was three times higher than that achieved through lime neutralization (6.3 mg/g). Moreover, the cost of treating AMD was 15 Chinese Yuan (CNY)/m3 AMD, which was significantly lower than that of lime neutralization (35 CNY/m3 AMD). Therefore, this approach has a good engineering application prospect in actual AMD treatment.
Collapse
Affiliation(s)
- Ting Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fange Cheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Du
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianru Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Wang J, Chen Z, Lin X, Wang Z, Chen X, Zhang X, Li J, Liu J, Liu S, Wei S, Sun D, Lu X. Deciphering the Radial Ligand Effect of Biomimetic Amino Acid toward Stable Alkaline Oxygen Evolution. Inorg Chem 2025; 64:1164-1172. [PMID: 39764732 DOI: 10.1021/acs.inorgchem.4c04889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. p-Toluidine (PT), benzoic acid (BA), and p-aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH. Compared to the organic molecules containing a single functional group, the coexistence of carboxyl and amino groups served as the electron acceptor and donor, respectively, thereby optimizing the electronic structure and suppressing metal dissolution. The overpotential of the PABA-modified catalyst (NiFe-LDH-PABA) was significantly reduced to 225 mV at 10 mA cm-2, and the Tafel slope was only 38.7 mV dec-1. At a high current density of 500 mA cm-2, the NiFe-LDH-PABA catalyst can work stably in a 1 M KOH solution at 25 °C over 550 h with 96% retention of its initial activity. Density functional theory (DFT) calculations further confirmed that the work offers significant insight into the modulation by organic molecular structure and provides a new paradigm for creating organic-inorganic hybrid OER catalysts.
Collapse
Affiliation(s)
- Jianye Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Zengxuan Chen
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Xiaojing Lin
- College of Physics, University of Qingdao, Qingdao 266071, PR China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Xiaodong Chen
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Xingheng Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Jiao Li
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Jinpeng Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Shuxian Wei
- College of Science, China University of Petroleum, Qingdao 266580, PR China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| |
Collapse
|
3
|
Li B, Li W, Zuo Q, Yin W, Li P, Wu J. Enhanced Cr(VI) elimination from water by goethite-impregnated activated carbon coupled with weak electric field. ENVIRONMENTAL RESEARCH 2024; 248:118253. [PMID: 38278507 DOI: 10.1016/j.envres.2024.118253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/08/2023] [Accepted: 12/03/2023] [Indexed: 01/28/2024]
Abstract
A weak electric field (WEF, 2 mA cm-2) was employed to promote Fe(III)/Fe(II) cycle on goethite-impregnated activated carbon (FeOOH@AC) filled in a continuous-flow column for enhanced Cr(VI) elimination from water. Surficial analysis and Cr species distribution showed that α-FeOOH of 0.2-1 μm was successfully synthesized and evenly loaded onto AC. Electron transfer from WEF to α-FeOOH was facilitated with AC as electron shuttles, thereby boosting Fe(III) reduction in the α-FeOOH. The generated Fe(II) reduced Cr(VI) and the resultant Cr(III) subsequently precipitated with OH- and Fe(III) to form Cr(OH)3 and (CrχFe1-χ)(OH)3. Therefore, the WEF-FeOOH@AC column exhibited a much lower Cr(VI) migration rate of 0.0018 cm PV-1 in comparison with 0.0037 cm PV-1 of the FeOOH@AC column, equal to 104 % higher Cr(VI) elimination capacity and 90 % longer column service life-span. Additionally, under different Cr(VI) loadings by varying either seepage velocities or influent Cr(VI) concentrations, the WEF-FeOOH@AC column maintained 1.0-1.5 folds higher Cr(VI) elimination and 0.9-1.4 folds longer longevity than those of the FeOOH@AC column owing to the interaction between FeOOH@AC and WEF. Our research demonstrated that WEF-FeOOH@AC was a potential method to promote Cr(VI) elimination from water and offer an effective strategy to facilitate Fe(III)/Fe(II) cycle in iron oxides.
Collapse
Affiliation(s)
- Bing Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Weiquan Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Qian Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Weizhao Yin
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Chon K, Mo Kim Y, Bae S. Advances in Fe-modified lignocellulosic biochar: Impact of iron species and characteristics on wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 395:130332. [PMID: 38224787 DOI: 10.1016/j.biortech.2024.130332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Lignocellulosic biomass is an attractive feedstock for biochar production owing to its high abundance and renewability. Various modified biochars have been extensively studied for wastewater treatment to improve the physical and chemical properties of lignocellulosic biochar (L-BC). Particularly, Fe-modified L-BCs have garnered attention owing to the abundance and eco-friendliness of Fe and the outstanding ability to remove various organic and inorganic contaminants via adsorption, oxidation, reduction, and catalytic reactions. Different iron species (e.g., Fe(0), Fe (hydr)oxide, Fe sulfide, and Fe-Metal) are formed during the preparation of Fe-L-BCs, which can completely differentiate the physical and chemical properties of BCs. This review discusses the advances in the synthesis of different Fe-L-BCs, specific changes in the physical and chemical properties of Fe-L-BCs upon Fe addition, and their impacts on wastewater treatment. The results of this review can demonstrate the unique advantages and drawbacks of Fe-L-BCs for the removal of different types of pollutants.
Collapse
Affiliation(s)
- Kangmin Chon
- Department of Integrated Energy and Infrasystem, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Lin X, Wang Z, Cao S, Hu Y, Liu S, Chen X, Chen H, Zhang X, Wei S, Xu H, Cheng Z, Hou Q, Sun D, Lu X. Bioinspired trimesic acid anchored electrocatalysts with unique static and dynamic compatibility for enhanced water oxidation. Nat Commun 2023; 14:6714. [PMID: 37872171 PMCID: PMC10593801 DOI: 10.1038/s41467-023-42292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023] Open
Abstract
Layered double hydroxides are promising candidates for the electrocatalytic oxygen evolution reaction. Unfortunately, their catalytic kinetics and long-term stabilities are far from satisfactory compared to those of rare metals. Here, we investigate the durability of nickel-iron layered double hydroxides and show that ablation of the lamellar structure due to metal dissolution is the cause of the decreased stability. Inspired by the amino acid residues in photosystem II, we report a strategy using trimesic acid anchors to prepare the subsize nickel-iron layered double hydroxides with kinetics, activity and stability superior to those of commercial catalysts. Fundamental investigations through operando spectroscopy and theoretical calculations reveal that the superaerophobic surface facilitates prompt release of the generated O2 bubbles, and protects the structure of the catalyst. Coupling between the metals and coordinated carboxylates via C‒O‒Fe bonding prevents dissolution of the metal species, which stabilizes the electronic structure by static coordination. In addition, the uncoordinated carboxylates formed by dynamic evolution during oxygen evolution reaction serve as proton ferries to accelerate the oxygen evolution reaction kinetics. This work offers a promising way to achieve breakthroughs in oxygen evolution reaction stability and dynamic performance by introducing functional ligands with static and dynamic compatibilities.
Collapse
Affiliation(s)
- Xiaojing Lin
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China.
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Yuying Hu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China.
| | - Xiaodong Chen
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Hongyu Chen
- College of Science, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Xingheng Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Shuxian Wei
- College of Science, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Hui Xu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Zhi Cheng
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Qi Hou
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China.
| |
Collapse
|
6
|
Chen Y, Zhao M, Li Y, Liu Y, Chen L, Jiang H, Li H, Chen Y, Yan H, Hou S, Jiang L. Regulation of tourmaline-mediated Fenton-like system by biochar: Free radical pathway to non-free radical pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118497. [PMID: 37413726 DOI: 10.1016/j.jenvman.2023.118497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
The heterogeneous Fenton-like systems induced by Fe-containing minerals have been largely applied for the degradation of organic pollutants. However, few studies have been conducted on biochar (BC) as an additive to Fenton-like systems mediated by iron-containing minerals. In this study, the addition of BC prepared at different temperatures was found to significantly enhance the degradation of contaminants in the tourmaline-mediated Fenton-like system (TM/H2O2) using Rhodamine B (RhB) as the target contaminant. Furthermore, the hydrochloric acid-modified BC prepared at 700 °C (BC700(HCl)) could achieve complete degradation of high concentrations of RhB in the BC700(HCl)/TM/H2O2 system. Free radical quenching experiments showed that TM/H2O2 system removed contaminants mainly mediated by the free radical pathway. After adding BC, the removal of contaminants is mainly mediated by the non-free radical pathway in BC700(HCl)/TM/H2O2 system which was confirmed by the Electron paramagnetic resonance (EPR) experiments and electrochemical impedance spectroscopy (EIS). In addition, BC700(HCl) had broad feasibility in the degradation of other organic pollutants (Methylene Blue (MB) 100%, Methyl Orange (MO) 100%, and tetracycline (TC) 91.47%) in the tourmaline-mediated Fenton-like system. Possible pathways for the degradation of RhB by the BC700(HCl)/TM/H2O2 system were also proposed.
Collapse
Affiliation(s)
- Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha, 410205, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Suzhen Hou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
7
|
Li T, Zhang X, Zhou Y, Du X, Fang D, Liang J, Li J, Zhou L. Schwertmannite-based heterogeneous Fenton for enhancing sludge dewaterability over a wide pH range. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132240. [PMID: 37562350 DOI: 10.1016/j.jhazmat.2023.132240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Fe-based Fenton technology is commonly used to enhance sludge dewaterability, but it requires subsequent neutralization, resulting in excessive chemical consumption. In this study, we investigated the feasibility of using schwertmannite-composited Fe3O4 (Sch/Fe3O4) as a heterogeneous Fenton catalyst to enhance sludge dewaterability without the need for pH adjustment. A high reduction efficiency of sludge specific resistance to filtration (94.4%), moisture content (11.4%) and bound water (45.5%) after Sch/Fe3O4 +H2O2 treatment at initial pH 7.5 were obtained, suggesting that Sch/Fe3O4 +H2O2 posed good dehydration performance without any acidification. SO42- and H+ generation in Sch/Fe3O4 system played an important role in sludge pH decrease, which facilitated sludge cell lysis, intracellular water release, and provided a suitable pH for Fenton reaction. Reactive species (•OH, •O2-, and 1O2) from Sch/Fe3O4 +H2O2 could effectively destroy sludge EPS, releasing more bound water. Additionally, the negatively charged compounds were neutralized by dissolved Fe2+/Fe3+. Sch/Fe3O4, as a skeleton builder, rearranged the dissociative sludge flocs to improve the incompressibility and permeability of sludge cake. Finally, sludge treated with Sch/Fe3O4 +H2O2 achieved organic matters reserve, heavy metals reduction, further benefiting the final disposal.
Collapse
Affiliation(s)
- Ting Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yujun Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xin Du
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Di Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianru Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
8
|
Jiang T, Wang B, Gao B, Cheng N, Feng Q, Chen M, Wang S. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: Mechanisms and applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130075. [PMID: 36209607 DOI: 10.1016/j.jhazmat.2022.130075] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/10/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Biochar has shown large potential in environmental remediation because of its low cost, large specific surface area, porosity, and high conductivity. Biochar-assisted advanced oxidation processes (BC-AOPs) have recently attracted increasing attention to the remediation of organic pollutants from water. However, the effects of biochar properties on catalytic performance need to be further explored. There are still controversial and knowledge gaps in the reaction mechanisms of BC-AOPs, and regeneration methods of biochar catalysts are lacking. Therefore, it is necessary to systematically review the latest research progress of BC-AOPs in the treatment of organic pollutants in water. In this review, first of all, the effects of biochar properties on catalytic activity are summarized. The biochar properties can be optimized by changing the feedstocks, preparation conditions, and modification methods. Secondly, the catalytic active sites and degradation mechanisms are explored in different BC-AOPs. Different influencing factors on the degradation process are analyzed. Then, the applications of BC-AOPs in environmental remediation and regeneration methods of different biochar catalysts are summarized. Finally, the development prospects and challenges of biochar catalysts in environmental remediation are put forward, and some suggestions for future development are proposed.
Collapse
Affiliation(s)
- Tao Jiang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| | - Bing Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Ning Cheng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
9
|
Liu X, Yao Y, Lu J, Zhou J, Chen Q. Catalytic activity and mechanism of typical iron-based catalysts for Fenton-like oxidation. CHEMOSPHERE 2023; 311:136972. [PMID: 36283427 DOI: 10.1016/j.chemosphere.2022.136972] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Heterogeneous Fenton-like systems were exploited for the degradation of Reactive Red X-3B (RR X-3B) using iron-carbon composite, sponge iron, chalcopyrite and pyrite as catalysts. The effect of operational variables on the catalytic activity and metal leaching behavior of catalysts was evaluated and the catalytic mechanism was discussed. The experimental results showed that under the optimum conditions, chemical oxygen demand (COD) removals by Fenton-like systems could reach 89.91%, 86.84%, 80.11% and 60.02% with iron-carbon composite, sponge iron, chalcopyrite and pyrite, respectively. Micro-electrolysis of iron-carbon composite and sponge iron resulted in higher COD removal at acid pH range. Electron Paramagnetic Resonance (EPR) analysis and quenching tests showed that •OH was the main reactive oxygen species responsible for the degradation of RR X-3B. A large amount of Fe2+ leached from iron-carbon composite and sponge iron, which served as a homogeneous Fenton catalyst during the degradation of RR X-3B. In contrast, much lower amount of Fe2+ was leached from chalcopyrite and pyrite, and surface catalysis of the minerals played more important role in the generation of •OH. Surface characterization and density functional theory (DFT) calculation results illustrated that ≡Fe(II) was the primary surface catalytic site during the reaction. The reduction of ≡Fe(III) and ≡Cu(II) can be facilitated by sulfides on the mineral surface. The Fenton-like systems catalyzed by iron-based materials exhibited higher H2O2 utilization and COD removal than classical Fenton system. With the lower metal leaching concentration and stable surface property, chalcopyrite and pyrite may be more practical applicable from a long-term catalytic activity point of view.
Collapse
Affiliation(s)
- Xiaochen Liu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Yuan Yao
- Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, PR China.
| | - Jun Lu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Juan Zhou
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|
10
|
Liu H, Fu P, Liu F, Hou Q, Tong Z, Bi W. Degradation of ciprofloxacin by persulfate activated with pyrite: mechanism, acidification and tailwater reuse. RSC Adv 2022; 12:29991-30000. [PMID: 36321107 PMCID: PMC9582745 DOI: 10.1039/d2ra05412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Residues of ciprofloxacin (CIP) in the environment pose a threat to human health and ecosystems. This study investigated the degradation of CIP by persulfate (PS) activated with pyrite (FeS2). Results showed that when [CIP] = 30 μM, [FeS2] = 2.0 g L-1, and [PS] = 1 mM, the CIP removal rate could reach 94.4% after 60 min, and CIP mineralization rate reached 34.9%. The main free radicals that degrade CIP were SO4˙- and HO˙, with contributions of 34.4% and 35.7%, respectively. Additionally, compared to the control (ultrapure water), CIP in both tap water and river water was not degraded. However, acidification could eliminate the inhibition of CIP degradation in tap water and river water. Furthermore, acidic tailwater from CIP degradation could be utilized to adjust the pH of untreated CIP, which could greatly promote the degradation of CIP and further reduce disposal costs. The reaction solution was not significantly biotoxic and three degradation pathways of CIP were investigated. Based on the above results and the characterization of FeS2, the mechanism of CIP degradation in the FeS2/PS system was that FeS2 activated PS to generate Fe(iii) and SO4˙-. The sulfide in FeS2 reduced Fe(iii) to Fe(ii), thus achieving an Fe(iii)/Fe(ii) cycle for CIP degradation.
Collapse
Affiliation(s)
- Hui Liu
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Peng Fu
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Fenwu Liu
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Qingjie Hou
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Zhenye Tong
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Wenlong Bi
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| |
Collapse
|