1
|
Malthaner L, Garcia X, Rios-Mendoza LM, Rivera-Hernández JR, Cruz R, Amezcua F. First Data on Anthropogenic Microparticles in the Gastrointestinal Tract of Juvenile Scalloped Hammerhead Sharks (Sphyrna lewini) in the Gulf of California. FISHES 2024; 9:310. [DOI: 10.3390/fishes9080310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Scalloped hammerhead sharks (Sphyrna lewini) are critically endangered, according to the International Union for Conservation of Nature Red List, likely due to anthropogenic activities such as intense fishing and pollution. Nowadays, plastic debris contamination is a subject of concern due to its extensive presence in the sea and the digestive tracts of many fish species. The possible effects of plastic debris as a vector of other pollutants are still unknown. We analyzed the digestive tract of 58 hammerhead sharks to investigate the correlation between plastic and other anthropogenic microparticle contamination and their feeding habits in the eastern region of the Gulf of California, revealing a debris contamination occurrence of 79.3%. Out of these, 91.4% corresponded to fibers, and the remaining 8.6% to fragments. The main component of the debris was cellulose (64.4%). According to their diet, these organisms exhibit benthopelagic habits, feeding both in the water column and on the seabed. These results indicate a high level of contamination of anthropogenic cellulosic microfibers in the area. Although cellulosic microfibers are recognized as a biomaterial, they can be harmful to marine species, posing an additional threat to this iconic shark. This changed according to the year, indicating that the anthropogenic microparticle ingestion is related to the discharges of human activities and their seasonality rather than to a selection process by the sharks.
Collapse
Affiliation(s)
- Leony Malthaner
- International Master of Science in Marine Biological Resources, Ghent University, 9000 Ghent, Belgium
| | - Ximena Garcia
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Cto. de los Posgrados S/N, C.U., Coyoacán, México City 04510, Mexico
| | | | - José R. Rivera-Hernández
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico
| | - Roberto Cruz
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico
| | - Felipe Amezcua
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico
| |
Collapse
|
2
|
Zhao W, Li J, Liu M, Wang R, Zhang B, Meng XZ, Zhang S. Seasonal variations of microplastics in surface water and sediment in an inland river drinking water source in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168241. [PMID: 37914114 DOI: 10.1016/j.scitotenv.2023.168241] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
The aim of this study was to examine microplastic (size distribution of 0.05-5 mm) occurrence and distribution in drinking water source of XJ River during both flooding and dry periods. Surface water and sediment samples were collected from the CS City section of the river in August and December 2020. During the flooding period, microplastic abundances were observed at 0.72-18.6 (7.32 ± 2.36) items L-1 in surface water and 26.3-302 (150 ± 75.6) items kg-1 dry weight (dw) in sediment. In the dry period, abundances were slightly higher at 2.88-17.7 (11.0 ± 3.08) items L-1 and 27.0-651 (249 ± 182) items kg-1 dw, respectively. Microplastics were found in higher concentrations in urban areas and downstream of wastewater treatment plants, suggesting anthropogenic sources. The diversity in shapes, colors, and types of microplastics in surface waters and sediments indicates specialized enrichment processes and persistent sources of microplastic pollution. Approximately 60 % of the microplastic particles identified fall within the 50-100 μm range. Furthermore, a significant correlation was observed between these smaller-sized particles and the overall prevalence of microplastics. Fourier-transform infrared spectroscopy and scanning electron microscopy indicated that the microplastics had been subjected to weathering in the environment, contributing to the production of oxygen-containing functional groups and surface cleavage features. The utilization of energy dispersive spectroscopy revealed the presence of microplastics associated with various heavy metals, highlighting the intricate nature of microplastic pollution. Moreover, the high abundance of microplastics may pose a potential ecological risk to the aquatic environment of the XJ River. The results of this study demonstrate concerning levels of microplastics in the XJ River, despite its status as a high-quality water source.
Collapse
Affiliation(s)
- Wenyu Zhao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114,China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Jing Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengyue Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114,China
| | - Rui Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Boxuan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shengwei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114,China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Mohan K, Lakshmanan VR. A critical review of the recent trends in source tracing of microplastics in the environment. ENVIRONMENTAL RESEARCH 2023; 239:117394. [PMID: 37838194 DOI: 10.1016/j.envres.2023.117394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Microplastics are found across the globe because of their size and ability to transport across environments. The effects of microplastics on the micro- and macro-organisms have brought out concern over the potential risk to human health and the need to regulate their distribution at the source. Control of microplastic pollution requires region-specific management and mitigation strategies which can be developed with the information on sources and their contributions. This review provides an overview of the sources, fate, and distribution of microplastics along with techniques to source-trace microplastics. Source-tracing approaches provide both qualitative and quantitive information. Since better outcomes have been produced by the integration of techniques like backward trajectory analysis with cluster analysis, the significance of integrated and multi-dimensional approaches has been emphasized. The scope of the plastisphere, heavy metal, and biofilm microbial community in tracing the sources of microplastics are also highlighted. The present review allows the researchers and policymakers to understand the recent trends in the source-tracing of microplastics which will help them to develop techniques and comprehensive action plans to limit the microplastic discharge at sources.
Collapse
Affiliation(s)
- Kiruthika Mohan
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, 632014, India.
| | - Vignesh Rajkumar Lakshmanan
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
4
|
Sari Erkan H, Takatas B, Ozturk A, Gündogdu S, Aydın F, Koker L, Ozdemir OK, Albay M, Onkal Engin G. Spatio-temporal distribution of microplastic pollution in surface sediments along the coastal areas of Istanbul, Turkey. MARINE POLLUTION BULLETIN 2023; 195:115461. [PMID: 37659384 DOI: 10.1016/j.marpolbul.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Microplastics (MPs) have become prevalent in various environmental compartments, including air, water, and soil, attracting attention as significant pollutant parameters. This study investigated the prevalence of MP pollution in surface sediments along Istanbul's Marmara Sea, encompassing the megacity and the Bosphorus. A comprehensive sampling approach was employed, covering 43 stations across four seasons and depths ranging from 5 to 70 m. The objective was to assess the impact of terrestrial, social, and industrial activities on MPs. The average concentrations varied per season, with fall, winter, spring, and summer values recorded as 2000 ± 4100, 1600 ± 3900, 4300 ± 12,000, and 9500 ± 20,300 particles/kg-DW. The study identified river stations in the Golden Horn and sea discharge locations as hotspots for high concentrations. Notably, the dominant shape shifted from fibers in fall, winter, and spring to fragments during summer, coinciding with mucilage occurrences. The study identified 11 different polymers, with polyethylene (44 %) and polypropylene (31 %) being the most common.
Collapse
Affiliation(s)
- Hanife Sari Erkan
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye.
| | - Betul Takatas
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye
| | - Alihan Ozturk
- Yildiz Technical University, Control and Automation Engineering Department, 34349 Istanbul, Turkiye
| | - Sedat Gündogdu
- Cukurova University, Faculty of Fisheries, Department of Basic Sciences, 01330 Adana, Turkiye
| | - Fatih Aydın
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Latife Koker
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Oguz Kaan Ozdemir
- Yıldız Technical University, Department of Metallurgical and Materials Engineering, 34220 İstanbul, Turkiye
| | - Meric Albay
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Guleda Onkal Engin
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye
| |
Collapse
|
5
|
Ergas M, Figueroa D, Paschke K, Urbina MA, Navarro JM, Vargas-Chacoff L. Cellulosic and microplastic fibers in the Antarctic fish Harpagifer antarcticus and Sub-Antarctic Harpagifer bispinis. MARINE POLLUTION BULLETIN 2023; 194:115380. [PMID: 37562239 DOI: 10.1016/j.marpolbul.2023.115380] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Human settlements within the Antarctic continent have caused significant coastal pollution by littering plastic. The present study assessed the potential presence of microplastics in the gastrointestinal tract of the Antarctic fish Harpagifer antarcticus, endemic to the polar region, and in the sub-Antarctic fish Harpagifer bispinis. H. antarcticus. A total of 358 microfibers of multiple colors were found in 89 % of H. antarcticus and 73 % of H. bispinis gastrointestinal track. A Micro-FTIR analysis characterized a sub-group (n = 42) of microfibers. It revealed that most of the fibers were cellulose (69 %). Manmade fibers such as microplastics polyethylene terephtalate, acrylics, and semisynthetic/natural cellulosic fibers were present in the fish samples. All the microfibers extracted were textile fibers of blue, black, red, green, and violet color. Our results suggest that laundry greywater discharges of human settlements near coastal waters in Antarctica are a major source of these pollutants in the Antarctic fish.
Collapse
Affiliation(s)
- Mauricio Ergas
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Daniela Figueroa
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Kurt Paschke
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile; Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile; Integrative Biology Group, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
6
|
Trindade PAA, Brabo LDM, Andrades R, Azevedo-Santos VM, Andrade MC, Candore L, Cabigliera SB, Chelazzi D, Cincinelli A, Jeffres CA, Giarrizzo T. First record of plastic ingestion by a freshwater stingray. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163199. [PMID: 37004767 DOI: 10.1016/j.scitotenv.2023.163199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023]
Abstract
The abundance and dispersion of plastic particles in aquatic ecosystems has become pervasive resulting in the incorporation of these materials into food webs. Here we describe the first record of plastic ingestion by the freshwater white-blotched river stingray Potamotrygon leopoldi (Potamotrygonidae), an endemic and threatened species in the Xingu River, Amazon basin. Potamotrygonidae stingrays inhabit exclusively Neotropical rivers, occupying rocky substrate habitats and feeding mainly on benthic macroinvertebrates. The gastrointestinal tract of 24 stingrays were analyzed, 16 (66.6 %) of which contained plastic particles. In total, 81 plastic particles were recorded and consisted of microplastics (< 5 mm, n = 57) and mesoplastics (5-25 mm, n = 24). The plastic particles found were classified into fibers (64.2 %, n = 52) and fragments (35.8 %, n = 29). The predominant color was blue (33.3 %, n = 27), followed by yellow (18.5 %, n = 15), white (14.8 %, n = 12), black (13.6 %, n = 11), green (6.2 %, n = 5), transparent (4.9 %, n = 4), pink, grey and brown (2.5 %, n = 2, each) and orange (1.2 %, n = 1). No significant correlation was observed between the number of plastic particles and the body size. Eight types of polymers were identified in the plastic particles analyzed using 2D FTIR Imaging. The most frequent polymer was artificial cellulose fiber. This is the first report of plastic ingestion by freshwater elasmobranchs in the world. Plastic waste has become an emerging problem in aquatic ecosystems globally and our results provide an important datapoint for freshwater stingrays in the Neotropics.
Collapse
Affiliation(s)
- Paulo A A Trindade
- Grupo de Ecologia Aquática, Espaço Inovação do Parque de Ciência e Tecnologia Guamá (PCT Guamá), Belém, Pará, Brazil; Núcleo de Ecologia Aquática e Pesca da Amazônia-NEAP, Universidade Federal do Pará-UFPA, Belém, Pará, Brazil.
| | - Lúcio D M Brabo
- Grupo de Ecologia Aquática, Espaço Inovação do Parque de Ciência e Tecnologia Guamá (PCT Guamá), Belém, Pará, Brazil; Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil
| | - Ryan Andrades
- Grupo de Ecologia Aquática, Espaço Inovação do Parque de Ciência e Tecnologia Guamá (PCT Guamá), Belém, Pará, Brazil
| | - Valter M Azevedo-Santos
- Grupo de Ecologia Aquática, Espaço Inovação do Parque de Ciência e Tecnologia Guamá (PCT Guamá), Belém, Pará, Brazil; Programa de Pós-Graduação em Biodiversidade, Ecologia e Conservação, Universidade Federal do Tocantins-UFT, CEP 77500-000, Porto Nacional, Tocantins, Brazil; Faculdade Eduvale de Avaré, Avaré, São Paulo, Brazil
| | - Marcelo C Andrade
- Núcleo de Ecologia Aquática e Pesca da Amazônia-NEAP, Universidade Federal do Pará-UFPA, Belém, Pará, Brazil; Centro de Ciências Humanas, Naturais, Saúde e Tecnologia, Universidade Federal do Maranhão, 65200-000 Pinheiro, Maranhão, Brazil
| | - Laura Candore
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Serena B Cabigliera
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Carson A Jeffres
- Center for Watershed Sciences, University of California, Davis, CA, USA
| | - Tommaso Giarrizzo
- Grupo de Ecologia Aquática, Espaço Inovação do Parque de Ciência e Tecnologia Guamá (PCT Guamá), Belém, Pará, Brazil; Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil
| |
Collapse
|
7
|
Barboza LGA, Otero XL, Fernández EV, Vieira LR, Fernandes JO, Cunha SC, Guilhermino L. Are microplastics contributing to pollution-induced neurotoxicity? A pilot study with wild fish in a real scenario. Heliyon 2023; 9:e13070. [PMID: 36711285 PMCID: PMC9880392 DOI: 10.1016/j.heliyon.2023.e13070] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Pollution-induced neurotoxicity is of high concern. This pilot study investigated the potential relationship between the presence of microplastics (MPs) in the brain of 180 wild fish (Dicentrarchus labrax, Platichthys flesus, Mugil cephalus) from a contaminated estuary and the activity of the acetylcholinesterase (AChE) enzyme. MPs were found in 9 samples (5% of the total), all of them from D. labrax collected in the summer, which represents 45% of the samples of this species collected in that season (20). Seventeen MPs were recovered from brain samples, with sizes ranging from 8 to 96 μm. Polyacrylamide, polyacrylic acid and one biopolymer (zein) were identified by Micro-Raman spectroscopy. Fish with MPs showed lower (p ≤ 0.05) AChE activity than those where MPs were not found. These findings point to the contribution of MPs to the neurotoxicity induced by long-term exposure to pollution, stressing the need of further studies on the topic to increase 'One Health' protection.
Collapse
Affiliation(s)
- Luís Gabriel A. Barboza
- CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal,ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal,Corresponding author. CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| | - Xosé L. Otero
- CRETUS Institute, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, 15782, Spain,REBUSC, Network of Biological stations of the University of Santiago de Compostela, Marine Biology Station A Graña, Ferrol, Spain
| | - Ezequiel V. Fernández
- RIAIDT, The Network of Infrastructures to Support Research and Technological Development of the University of Santiago de Compostela, Edificio Cactus, Campus Vida, Santiago de Compostela, 15782, Spain
| | - Luís R. Vieira
- CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal,ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - José O. Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sara C. Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Lúcia Guilhermino
- CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal,ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| |
Collapse
|
8
|
Zhang W, Huang W, Tan J, Guo Q, Wu B. Heterogeneous catalysis mediated by light, electricity and enzyme via machine learning: Paradigms, applications and prospects. CHEMOSPHERE 2022; 308:136447. [PMID: 36116627 DOI: 10.1016/j.chemosphere.2022.136447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Energy crisis and environmental pollution have become the bottleneck of human sustainable development. Therefore, there is an urgent need to develop new catalysts for energy production and environmental remediation. Due to the high cost caused by blind screening and limited valuable computing resources, the traditional experimental methods and theoretical calculations are difficult to meet with the requirements. In the past decades, computer science has made great progress, especially in the field of machine learning (ML). As a new research paradigm, ML greatly accelerates the theoretical calculation methods represented by first principal calculation and molecular dynamics, and establish the physical picture of heterogeneous catalytic processes for energy and environment. This review firstly summarized the general research paradigms of ML in the discovery of catalysts. Then, the latest progresses of ML in light-, electricity- and enzyme-mediated heterogeneous catalysis were reviewed from the perspective of catalytic performance, operating conditions and reaction mechanism. The general guidelines of ML for heterogeneous catalysis were proposed. Finally, the existing problems and future development trend of ML in heterogeneous catalysis mediated by light, electricity and enzyme were summarized. We highly expect that this review will facilitate the interaction between ML and heterogeneous catalysis, and illuminate the development prospect of heterogeneous catalysis.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Wenguang Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China.
| | - Jie Tan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China
| | - Qingwei Guo
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215002, People's Republic of China.
| |
Collapse
|