1
|
Sales Morais NW, Domingos Araújo da Silva MV, Guthierrez Nunes do Nascimento R, Matsumura de Sousa V, Alves da Motta Sobrinho M, Bezerra Dos Santos A. Impact of graphene oxide functionalized with nano-magnetite on swine wastewater anaerobic treatment. BIORESOURCE TECHNOLOGY 2025; 429:132551. [PMID: 40245996 DOI: 10.1016/j.biortech.2025.132551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
This study evaluated the impact of graphene oxide functionalized with nano-magnetite (GO-Fe3O4) on the anaerobic treatment of swine wastewater (SW). The experiment was conducted in glass reactors with 200 mL of reaction volume, operating in fed-batch mode in three treatment cycles, each with 35 days. The evaluated doses of GO-Fe3O4 were 3 mg L-1 (1 mg gVSS-1) and 150 mg L-1 (50 mg gVSS-1). In the third cycle, GO-Fe3O4 (150 mg L-1) increased the biochemical methane potential by 17 %, the biogas production potential by 18 %, the methane production rate constant by 31 %, the maximum methane production rate by 32 %, and reduced the lag phase time by 25 %. Potential direct interspecies electron transfer partners are Midas g 156 and Clostridium sensu stricto 1 with Methanobacterium beijingense and Methanothrix soehngenii. GO-Fe3O4 is a powerful and unique material for improving methane and biogas production via SW anaerobic treatment.
Collapse
Affiliation(s)
- Naassom Wagner Sales Morais
- Department of Hydraulic and Environmental Engineering, Campus do Pici, Federal University of Ceará, Bloco 713, Pici. CEP: 60455-900, Fortaleza, Ceará, Brazil
| | | | | | - Valdemiro Matsumura de Sousa
- Department of Hydraulic and Environmental Engineering, Campus do Pici, Federal University of Ceará, Bloco 713, Pici. CEP: 60455-900, Fortaleza, Ceará, Brazil
| | | | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Campus do Pici, Federal University of Ceará, Bloco 713, Pici. CEP: 60455-900, Fortaleza, Ceará, Brazil.
| |
Collapse
|
2
|
Alves Lourenço V, Pereira Camargo F, Kimiko Sakamoto I, Silva EL, Amâncio Varesche MB. Waste valorization through anaerobic co-digestion in coffee and swine farms: CH 4 yield optimization and farm-scale viability. BIORESOURCE TECHNOLOGY 2025; 415:131667. [PMID: 39477165 DOI: 10.1016/j.biortech.2024.131667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024]
Abstract
Considering that the Brazilian southeast has several agricultural farms that produce coffee and raise swine, and that the waste generated in these farms has some complementary characteristics, the present study aimed to optimize the methane (CH4) yield in the batch anaerobic co-digestion of liquid swine manure (LSM), coffee wastewater (CFW), and coffee husk and pulp. The optimization occurred through a two-factor central composite rotational design with a variation of CFW percentage (8 to 22 %) in the mixing liquid substrates and the organic matter concentration (0.3 to 12 gCOD L-1). The optimized condition had an ideal nutritional condition (14 % of CFW, 86 % of LSM, 7.3 gCOD L-1 and COD/N ratio of 35) to obtain high CH4 production (971.7 mLCH4), yield (160.9 mLCH4 g-1VS), maximum specific production rate (1.6 mL h-1) and low lag phase (217.6 h).
Collapse
Affiliation(s)
- Vitor Alves Lourenço
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil.
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Edson Luiz Silva
- Center of Exact Sciences and Technology, Department of Chemical Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565905, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil.
| |
Collapse
|
3
|
Gyadi T, Bharti A, Basack S, Kumar P, Lucchi E. Influential factors in anaerobic digestion of rice-derived food waste and animal manure: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 413:131398. [PMID: 39236907 DOI: 10.1016/j.biortech.2024.131398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Utilization of organic community wastes towards deriving sustainable renewable energy and adequate disposal of the residual has been an important topic of investigation. Anaerobic digestion and co-digestion of rice-derived food waste and animal manure for sustainable biogas generation is crucial from the view-point of community consumption. This paper presents an extensive review of the important and recent contributions in the related areas. The critical physico-chemical parameters involved in such digestion process are analyzed, including temperature, carbon-nitrogen ratio, microorganisms, pH, substrate characteristics, organic loading rate, hydraulic retention time, volatile fatty acids, ammonia, and light/heavy metal ions. Studies implied that the optimum yield of biogas production could be achieved only when the values of the parameters exist in the specific ranges. Few recent studies highlighted the use of emerging techniques including micro-aerobic system, additives, laser radiation, bio-electrochemical field, among others for efficiency enhancement of the digestion process and optimum yield. The entire study provided a set of important conclusions and future research directives are as well proposed.
Collapse
Affiliation(s)
- Tado Gyadi
- Department of Civil Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| | - Ajay Bharti
- Department of Civil Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| | - Sudip Basack
- Regent Education and Research Foundation, Affiliated: MAKA University of Technology, Kolkata 700 121, India; Department of Civil Engineering, Graphic Era Deemed to be University, Clement City, Dehradun 248002, India
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Uttar Pradesh, India
| | - Elena Lucchi
- Dipartimento di Ingegneria Civile e Architettura (DICAr), University of Pavia, Via Ferrata 3, Pavia 27100, Italy.
| |
Collapse
|
4
|
Ma K, Wang W, Meng L, Zhao Y, Li Y, Li X. Uncovering the mechanisms of ethanol stimulation on magnetite-enhanced anaerobic process treating oxytetracycline contained wastewater. CHEMOSPHERE 2024; 366:143573. [PMID: 39428022 DOI: 10.1016/j.chemosphere.2024.143573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Magnetite has been proved to facilitate direct interspecies electron transfer (DIET)-based syntrophys and might alleviate inhibitory effects of antibiotics in anaerobic digestion (AD), while feeding ethanol was an effective approach to enrich the DIET partners. However, most of the existing studies were conducted at fixed ethanol concentration, few attentions were paid on the effects of differential ethanol proportion on AD, the underlying roles and mechanisms of ethanol stimulation remains unclear. This study systematically investigated the impact of ethanol stimulation on anaerobic processes treating oxytetracycline (OTC)-contaminated wastewater at varying proportions (20%, 50%, and 80%, based on equivalent COD value). In the presence of magnetite, ethanol stimulation promoted the methane production from 244.9 mL/g COD to a maximum 434.2 mL/g COD, with the most pronounced enhancement observed at high ethanol proportions. In particular, the average methane production obtained at 50% and 80% ethanol was 328.5 and 297.7 mL/g COD, respectively, whereas the enhancement of 20% ethanol stimulation was relatively limited. Concurrently, more stable COD removal and OTC reduction was noted in the existence of both magnetite and high ethanol proportions. Microbial analysis revealed the pivotal roles of Methanosaeta, alongside the predominance of Methanobacterium, in regulating COD conversion and driving methanogenesis through the CO2 reduction pathway. Notably, high ethanol proportions fostered the enrichment of exoelectrogens (Geobacter, Desulfovibrio) in the magnetite-amended system, accompanied by the up-regulation of genes involved in organic metabolism pathways. Further investigation of functional genes highlighted the prevalence of pilA enrichment in the magnetite-amended system at low ethanol proportions, whereas omcS became more abundant at high ethanol proportions.
Collapse
Affiliation(s)
- Kaili Ma
- School of Environment, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, Henan, People's Republic of China.
| | - Wei Wang
- School of Environment, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, Henan, People's Republic of China
| | - Lingwei Meng
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, People's Republic of China
| | - Yujie Zhao
- School of Environment, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, Henan, People's Republic of China
| | - Yue Li
- School of Environment, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, Henan, People's Republic of China
| | - Xiangkun Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300000, People's Republic of China
| |
Collapse
|
5
|
Lemaigre S, Gerin PA, Adam G, Klimek D, Goux X, Herold M, Frkova Z, Calusinska M, Delfosse P. Potential of acetic acid to restore methane production in anaerobic reactors critically intoxicated by ammonia as evidenced by metabolic and microbial monitoring. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:188. [PMID: 38042839 PMCID: PMC10693713 DOI: 10.1186/s13068-023-02438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Biogas and biomethane production from the on-farm anaerobic digestion (AD) of animal manure and agri-food wastes could play a key role in transforming Europe's energy system by mitigating its dependence on fossil fuels and tackling the climate crisis. Although ammonia is essential for microbial growth, it inhibits the AD process if present in high concentrations, especially under its free form, thus leading to economic losses. In this study, which includes both metabolic and microbial monitoring, we tested a strategy to restore substrate conversion to methane in AD reactors facing critical free ammonia intoxication. RESULTS The AD process of three mesophilic semi-continuous 100L reactors critically intoxicated by free ammonia (> 3.5 g_N L-1; inhibited hydrolysis and heterotrophic acetogenesis; interrupted methanogenesis) was restored by applying a strategy that included reducing pH using acetic acid, washing out total ammonia with water, re-inoculation with active microbial flora and progressively re-introducing sugar beet pulp as a feed substrate. After 5 weeks, two reactors restarted to hydrolyse the pulp and produced CH4 from the methylotrophic methanogenesis pathway. The acetoclastic pathway remained inhibited due to the transient dominance of a strictly methylotrophic methanogen (Candidatus Methanoplasma genus) to the detriment of Methanosarcina. Concomitantly, the third reactor, in which Methanosarcina remained dominant, produced CH4 from the acetoclastic pathway but faced hydrolysis inhibition. After 11 weeks, the hydrolysis, the acetoclastic pathway and possibly the hydrogenotrophic pathway were functional in all reactors. The methylotrophic pathway was no longer favoured. Although syntrophic propionate oxidation remained suboptimal, the final pulp to CH4 conversion ratio (0.41 ± 0.10 LN_CH4 g_VS-1) was analogous to the pulp biochemical methane potential (0.38 ± 0.03 LN_CH4 g_VS-1). CONCLUSIONS Despite an extreme free ammonia intoxication, the proposed process recovery strategy allowed CH4 production to be restored in three intoxicated reactors within 8 weeks, a period during which re-inoculation appeared to be crucial to sustain the process. Introducing acetic acid allowed substantial CH4 production during the recovery period. Furthermore, the initial pH reduction promoted ammonium capture in the slurry, which could allow the field application of the effluents produced by full-scale digesters recovering from ammonia intoxication.
Collapse
Affiliation(s)
- Sébastien Lemaigre
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg.
| | - Patrick A Gerin
- Earth and Life Institute, Bioengineering, Université Catholique de Louvain, Croix du Sud 2, Box L7.05.19, B-1348, Louvain-la-Neuve, Belgium
| | - Gilles Adam
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg
| | - Dominika Klimek
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg
| | - Xavier Goux
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg
| | - Malte Herold
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg
| | - Zuzana Frkova
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg
| | - Philippe Delfosse
- Université du Luxembourg, Campus Belval, Maison du Savoir, Avenue de l'Université 2, L-4365, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
6
|
Wang G, Fu P, Zhang B, Zhang J, Huang Q, Yao G, Li Q, Dzakpasu M, Zhang J, Li YY, Chen R. Biochar facilitates methanogens evolution by enhancing extracellular electron transfer to boost anaerobic digestion of swine manure under ammonia stress. BIORESOURCE TECHNOLOGY 2023; 388:129773. [PMID: 37722547 DOI: 10.1016/j.biortech.2023.129773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
This study explored the mechanisms by which biochar mitigates ammonia inhibition in anaerobic digestion (AD) of swine manure. Findings show 2-8 g/L exogenous ammonia dosages gradually inhibited AD, leading to decreases in the efficiencies of hydrolysis, acidogenesis and methanogenesis by 3.4-70.8%, 6.0-82.0%, and 4.9-93.8%, respectively. However, biochar addition mitigated this inhibition and facilitated methane production. Biochar enhanced microbial activities related to electron transport and extracellular electron transfer. Moreover, biochar primarily enriched Methanosarcina, which, consequently, upregulated the genes encoding formylmethanofuran dehydrogenase and methenyltetrahydromethanopterin cyclohydrolase for the CO2-reducing methanogenesis pathway by 26.9-40.8%. It is believed that biochar mediated direct interspecies electron transfer between syntrophic partners, thereby enhancing methane production under ammonia stress. Interestingly, biochar removal did not significantly impact the AD performance of the acclimated microbial community. This indicated the pivotal role of biochar in triggering methanogen evolution to mitigate ammonia stress rather than the indispensable function after the enrichment of ammonia-resistance methanogen.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Peng Fu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Bo Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Ji Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Qiuyi Huang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Gaofei Yao
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Mawuli Dzakpasu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Jianfeng Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
7
|
Peng Y, Li L, Yang P, Liu H, Ye W, Xue Z, Peng X, Wang X. Integrated genome-centric metagenomic and metaproteomic analyses unravel the responses of the microbial community to ammonia stress. WATER RESEARCH 2023; 242:120239. [PMID: 37348417 DOI: 10.1016/j.watres.2023.120239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Ammonia is a major inhibitor in anaerobic digestion of nitrogen-rich organic wastes. In this study, integrated genome-centric metagenomic and metaproteomic analyses were used to identify the key microorganisms and metabolic links causing instability by characterizing the process performance, microbial community, and metabolic responses of key microorganisms during endogenous ammonia accumulation. The identification of 89 metagenome-assembled genomes and analysis of their abundance profile in different operational phases permitted the identification of key taxa (Firmicutes and Proteobacteria) causing poor performance. Metabolic reconstruction indicated that the key taxa had the genetic potential to participate in the metabolism of C2C5 volatile fatty acids (VFAs). Further investigation suggested that during Phase I, the total ammonia nitrogen (TAN) level was maintained below 2000 mg N/L, and the reactor showed a high methane yield (478.30 ± 33.35 mL/g VS) and low VFAs concentration. When the TAN accumulated to > 2000 mg N/L, acid accumulation, mainly of acetate, began to occur, and the methane yield gradually decreased to 330.44 mL/g VS (Phase II). During this phase, the VFA degradation functions of the community were mainly mediated by Firmicutes. Approximately 61.54% of significant differentially expressed proteins (DEPs) related to acetate metabolism in Firmicutes were down-regulated, which led to an increase in acetate concentration to 4897.91 ± 1558.96 mg/L. However, the reactor performance showed spontaneous recovery without any interference (Phase III), during which Firmicutes gradually adapted to the high ammonia conditions. Approximately 75% of the significant DEPs related to acetate metabolism of Proteobacteria were also up-regulated in Phase III compared with Phase II; thus, VFA-related metabolic functions of the community were enhanced, which resulted in a decrease in the total VFA concentration to 195.39 mg/L. When the TAN increased above 4000 mg N/L, the system gradually showed acid accumulation dominated by propionate, accompanied by a second decrease in methane yield (Phase IV). During this phase, the number of up-regulated and down-regulated proteins related to acetate metabolism of Firmicutes and butyrate/valerate metabolism of Proteobacteria was comparable with that of Phase III, indicating that the metabolic functions related to acetate, butyrate, and valerate of the microbial community were not significantly affected. However, for propionate metabolism, the expression activity of fumarate hydratase from Firmicutes and Proteobacteria was severely inhibited by ammonia, as shown by down-regulation ratios of 63.64% and 85.71%, respectively. No protein with the same function that was not inhibited by ammonia could be detected, and the fumarate degradation function of the microbial community was severely damaged, leading to blocked propionate metabolism and irreversible deterioration of reactor performance. This study has provided a new perspective on the microecological mechanisms of ammonia inhibition.
Collapse
Affiliation(s)
- Yun Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Pingjin Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hengyi Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Wenjie Ye
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhirong Xue
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xiaoming Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
8
|
Constantinescu-Aruxandei D, Oancea F. Closing the Nutrient Loop-The New Approaches to Recovering Biomass Minerals during the Biorefinery Processes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2096. [PMID: 36767462 PMCID: PMC9915181 DOI: 10.3390/ijerph20032096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The recovery of plant mineral nutrients from the bio-based value chains is essential for a sustainable, circular bioeconomy, wherein resources are (re)used sustainably. The widest used approach is to recover plant nutrients on the last stage of biomass utilization processes-e.g., from ash, wastewater, or anaerobic digestate. The best approach is to recover mineral nutrients from the initial stages of biomass biorefinery, especially during biomass pre-treatments. Our paper aims to evaluate the nutrient recovery solutions from a trans-sectorial perspective, including biomass processing and the agricultural use of recovered nutrients. Several solutions integrated with the biomass pre-treatment stage, such as leaching/bioleaching, recovery from pre-treatment neoteric solvents, ionic liquids (ILs), and deep eutectic solvents (DESs) or integrated with hydrothermal treatments are discussed. Reducing mineral contents on silicon, phosphorus, and nitrogen biomass before the core biorefinery processes improves processability and yield and reduces corrosion and fouling effects. The recovered minerals are used as bio-based fertilizers or as silica-based plant biostimulants, with economic and environmental benefits.
Collapse
Affiliation(s)
| | - Florin Oancea
- Department of Bioresources, Bioproducts Group, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania
| |
Collapse
|
9
|
Rizzioli F, Bertasini D, Bolzonella D, Frison N, Battista F. A critical review on the techno-economic feasibility of nutrients recovery from anaerobic digestate in the agricultural sector. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|