1
|
Tan X, Liu Q, Li Y, Lv X, Guo Z, Duan G, Lin A. Reduction-stabilization characteristics, long-term stability and biotoxicity evaluation of Fe(II)/Al layered double hydroxides on Cr(VI) in contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126122. [PMID: 40147311 DOI: 10.1016/j.envpol.2025.126122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Chromium(Cr) poses a significant challenge for soil remediation due to its varying oxidation states, which often result in insufficient long-term effectiveness. In this study, Fe/Al-LDH with an excellent reduction-stabilization effect was synthesized for the remediation of Cr(VI)-contaminated soil, and long-term incubation experiments were conducted over 360 days. The Cr(VI) concentration in both soil types decreased significantly, with stabilization efficiencies reaching 99.82 % and 87.93 %, respectively. Even after multiple freeze-thaw and dry-wet cycles, the leaching concentrations of BS and YS soils remained within the corresponding standard limits after remediation. Moreover, the application of Fe/Al-LDH significantly enhanced plant germination indices, particularly root length. Furthermore, results from in vitro bioaccessibility and soil film diffusion gradient extraction experiments indicated a notable reduction in Cr bioaccessibility within the treatment group. Following remediation, soil enzyme activity, microbial species richness, and diversity increased. The relative abundance of Bacillus, a key Cr(VI)-reducing microorganism, rose from 17.57 % to 19.46 %-30.24 %, further contributing to the synergistic remediation of Cr pollution. Hence, this study provides technical support for the economic, environmentally friendly, and efficient remediation of Cr(VI) pollution control projects.
Collapse
Affiliation(s)
- Xiao Tan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Qi Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - YanQi Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xinyan Lv
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zi Guo
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
2
|
Gullì M, Cangioli L, Frusciante S, Graziano S, Caldara M, Fiore A, Klonowski AM, Maestri E, Brunori A, Mengoni A, Pihlanto A, Diretto G, Marmiroli N, Bevivino A. The relevance of biochar and co-applied SynComs on maize quality and sustainability: Evidence from field experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178872. [PMID: 39970561 DOI: 10.1016/j.scitotenv.2025.178872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Adoption of sustainable maize cropping practices is urgently needed. Synthetic microbial communities (SynComs) made of plant growth-promoting microorganisms (PGPMs), coupled with biochar from residual biomass, offer an environmentally compatible alternative to inorganic fertilizers and may improve soil fertility. This article extends in a two-year field trial with preliminary results obtained in previous pot experiments, monitoring plant physiology, soil biology and chemistry, and kernel metabolomics. Here, we report the synergistic effect of the co-application of biochar, SynComs, and arbuscular mycorrhizal fungi on the soil microbiome, maize growth, and kernel metabolomic profile. SynComs application did not affect the diversity and richness of soil microbial communities; therefore, it posed a low risk of long-term effects on soil microbial ecology. With SynComs and biochar co-application to the soil, the physiology of maize plants was characterized by higher chlorophyll content, ear weight, and kernel weight. The combination of SynComs and biochar also affected the kernel metabolome, resulting in enriched health-beneficial and anti-stress metabolites. Since the preliminary evidence on the environmental and economic impact of these new associations was more favorable than that of conventional fertilizers, it seems reasonable that their large-scale implementation can eventually favor the transition to more sustainable agriculture.
Collapse
Affiliation(s)
- Mariolina Gullì
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Lisa Cangioli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Sarah Frusciante
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alessia Fiore
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Alexandra M Klonowski
- Exploration & Utilisation of Genetic Resources, Matís ohf., Icelandic Food and Biotech R&D, Vínlandsleið 12, 113 Reykjavík, Iceland
| | - Elena Maestri
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Andrea Brunori
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Alessio Mengoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Anne Pihlanto
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Helsinki, Finland
| | - Gianfranco Diretto
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Nelson Marmiroli
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy.
| |
Collapse
|
3
|
Yang H, Chen N, Yang K, Liu F, Yuan Y, Zhang X, Hao Z, Jia H. Microscale Spatiotemporal Variation of Reactive Oxygen Species in the Charosphere: Underlying Formation Mechanism and Their Role in CO 2 Emission. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2095-2106. [PMID: 39849310 DOI: 10.1021/acs.est.4c11955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Charosphere, a highly active zone between biochar and surrounding soil, is widely present in agricultural and wildfire-affected soils, yet whether reactive oxygen species (ROS) are produced within the charosphere remains unclear. Herein, the production and spatiotemporal evolution of charosphere ROS were explored. In situ ROS capture visualized a gradual decrease in ROS production with increasing distance from the biochar/soil interface. Temporally, O2•- and H2O2 contents initially increased and then declined with increasing incubation time, peaking at 3.04 and 5.40 μmol kg-1, respectively, while •OH content decreased continuously. High-throughput sequencing revealed that dissolved biochar (DBC) facilitated ROS production by promoting the growth of bacteria with electron-releasing capacity, such as Bacteroidetes, Acidobacteria, Actinobacteria, and Chloroflexi. Additionally, adding electron transfer-weakened DBC significantly decreased ROS contents (ANOVA, P < 0.05), demonstrating that DBC also served as the electron shuttle and electron-storing materials to promote ROS production by accelerating electron transfer. This was further confirmed via fluorescence imaging, which visually showed stronger electron transfer ability near the soil/biochar surface. Inhibition and isotope experiments revealed the critical role of charosphere ROS in CO2 emissions, primarily from soil organic carbon. This study highlights the charosphere as a prevalent yet overlooked ROS hotspot, advancing our understanding of organic carbon turnover in soils.
Collapse
Affiliation(s)
- Huiqiang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Na Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Kangjie Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Fuhao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Yuntao Yuan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Xianglei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Zelin Hao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| |
Collapse
|
4
|
Yang L, Li S, Ahmed W, Jiang T, Mei F, Hu X, Liu W, Abbas FM, Xue R, Peng X, Zhao Z. Exploring the Relationship Between Biochar Pore Structure and Microbial Community Composition in Promoting Tobacco Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:2952. [PMID: 39519871 PMCID: PMC11548322 DOI: 10.3390/plants13212952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The potential benefits of biochar, a carbon-rich substance derived from biomass, for enhancing agricultural yield and soil health have drawn increasing interest. Nevertheless, owing to the lack of specialized studies, the role of its poly-spatial structure in the success of fostering plant growth remains unclear. This study aimed to assess the effects of various biochar pore shapes on tobacco growth and the underlying microbiological processes. Three pyrolysis temperatures (250 °C, 400 °C, and 550 °C) were used to produce biochar from tobacco stems, resulting in different pore structures (T3 > T2 > T1). We then used BET-specific surface area (BET), t.Plot micropore specific surface area (t.Plot), mesopore specific surface area (MSSA), specific pore volume (SPV), average pore size (AP), and mesopore pore volume (MPV) measurements to evaluate the effects of these biochars on tobacco growth and biomass accumulation, and microbial analyses were performed to investigate the underlying mechanisms. When applied to plants, biochar increased their growth compared to untreated controls. The most notable improvement in tobacco growth was observed in the biochar produced at 400 °C (T3), which possessed the largest and most advantageous pore structure among all treatments. Further studies demonstrated that biochars with greater specific surface areas (BET, t.Plot, and MSSA) positively altered the abundance of key microbial taxa (e.g., Stenotrophobacter, Ensifer, Claroideoglomus) and community composition, thereby encouraging plant development and biomass accumulation. Conversely, greater pore volumes (SPV, AP, and MPV) inhibited microbial activity and significantly affected growth and biomass accumulation. Structural equation modeling further demonstrated that the pore structure of biochar greatly affected plant growth by changing the relative abundance and community composition of soil microbes. Maximizing the benefits of biochar in stimulating plant growth and improving soil microbial communities depends on optimizing the material's pore structure, particularly by increasing the specific surface area. These findings will help expand the use of biochar in sustainable agriculture.
Collapse
Affiliation(s)
- Linyuan Yang
- Yunnan Agricultural University, Kunming 650201, China
- Yunnan Academy of Agricultural Sciences, Institute of Tropical and Subtropical Cash Crops, Baoshan 678000, China
| | - Shichen Li
- Yunnan Agricultural University, Kunming 650201, China
| | - Waqar Ahmed
- Yunnan Agricultural University, Kunming 650201, China
| | - Tao Jiang
- Yunnan Agricultural University, Kunming 650201, China
| | - Fupeng Mei
- Yunnan Agricultural University, Kunming 650201, China
| | - Xiaodong Hu
- Yunnan Agricultural University, Kunming 650201, China
| | - Wubo Liu
- Yunnan Agricultural University, Kunming 650201, China
| | - Fatima M. Abbas
- Department of Biology, Faculty of Sciences and Arts, King Khalid University, Dahran Al-Janoub 61421, Saudi Arabia
| | - Rujun Xue
- Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoci Peng
- Yunnan Agricultural University, Kunming 650201, China
| | | |
Collapse
|
5
|
Chinnadurai V, Govindasamy C. L-Asparaginase producing ability of Aspergillus species isolated from tapioca root soil and optimized ideal growth parameters for L-Asparaginase production. ENVIRONMENTAL RESEARCH 2024; 259:119543. [PMID: 38964574 DOI: 10.1016/j.envres.2024.119543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
This research was designed to isolate the predominant L-asparaginase-producing fungus from rhizosphere soil of tapioca field and assess the suitable growth conditions required to produce maximum L-asparaginase activity. The Aspergillus tubingensis was identified as a predominant L-asparaginase producing fungal isolate from 15 isolates, and it was characterized by 18S rRNA sequencing. The L-asparaginase-producing activity was confirmed by pink color zone formation around the colonies in modified Czapek Dox agar plate supplemented with 1% L-Asparagine. The optimal growth conditions required for the L-asparaginase production by A. tubingensis were optimized as pH 6.0, temperature 30 °C, glucose as carbon source, 1.5% of L-Asparagine, ammonium sulphate as nitrogen source, rice husk as natural L-Asparagine enriched source, and 8 days of the incubation period. The L-Asparaginase activity from A. tubingensis was excellent under these optimal growth conditions. It significantly used rice husk as an alternative to synthetic L-Asparagine. As a result, this may be considered a sustainable method of converting organic waste into valuable raw material for microbial enzyme production.
Collapse
Affiliation(s)
- Vajjiram Chinnadurai
- Department of Botany, Sri Vidya Mandir Arts and Science (Autonomous), Katteri, Uthangarai, 636902, Krishnagiri, Tamil Nadu, India.
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh - 11433, Saudi Arabia
| |
Collapse
|
6
|
Ahmed N, Deng L, Narejo MUN, Baloch I, Deng L, Chachar S, Li Y, Li J, Bozdar B, Chachar Z, Hayat F, Chachar M, Gong L, Tu P. Bridging agro-science and human nutrition: zinc nanoparticles and biochar as catalysts for enhanced crop productivity and biofortification. FRONTIERS IN PLANT SCIENCE 2024; 15:1435086. [PMID: 39220014 PMCID: PMC11361987 DOI: 10.3389/fpls.2024.1435086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The integration of zinc nanoparticles (Zn NPs) with biochar offers a transformative approach to sustainable agriculture by enhancing plant productivity and human nutrition. This combination improves soil health, optimizes nutrient uptake, and increases resilience to environmental stressors, leading to superior crop performance. Our literature review shows that combining Zn NPs with biochar significantly boosts the crop nutrient composition, including proteins, vitamins, sugars, and secondary metabolites. This enhancement improves the plant tolerance to environmental challenges, crop quality, and shelf life. This technique addresses the global issue of Zn deficiency by biofortifying food crops with increased Zn levels, such as mung beans, lettuce, tomatoes, wheat, maize, rice, citrus, apples, and microgreens. Additionally, Zn NPs and biochar improve soil properties by enhancing water retention, cation exchange capacity (CEC), and microbial activity, making soils more fertile and productive. The porous structure of biochar facilitates the slow and sustained release of Zn, ensuring its bioavailability over extended periods and reducing the need for frequent fertilizer applications. This synergy promotes sustainable agricultural practices and reduces the environmental footprint of the traditional farming methods. However, potential ecological risks such as biomagnification, nanoparticle accumulation, and toxicity require careful consideration. Comprehensive risk assessments and management strategies are essential to ensure that agricultural benefits do not compromise the environmental or human health. Future research should focus on sustainable practices for deploying Zn NPs in agriculture, balancing food security and ecological integrity and positioning this approach as a viable solution for nutrient-efficient and sustainable agriculture.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, China
| | | | - Iqra Baloch
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Lansheng Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Bilquees Bozdar
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Faisal Hayat
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | | | - Lin Gong
- Dongguan Yixiang Liquid Fertilizer Co. Ltd., Dongguan, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Prabhu N, Sabour AAA, Rengarajan S, Gajendiran K, Natarajan D. Analysis of the remediation competence of Aspergillus flavus biomass in wastewater of the dyeing industry: An in-vitro study. ENVIRONMENTAL RESEARCH 2024; 252:118705. [PMID: 38548251 DOI: 10.1016/j.envres.2024.118705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
The dyeing industry effluent causes severe environmental pollution and threatens the native flora and fauna. The current study aimed to analyze the physicochemical parameters of dyeing industry wastewater collected in different sites (K1, E2, S3, T4, and V5), as well as the metal tolerance and decolourisation ability of Aspergillus flavus. Furthermore, the optimal biomass quantity and temperatures required for efficient bioremediation were investigated. Approximately five dyeing industry wastewater samples (K1, E2, S3, T4, and V5) were collected from various sampling stations, and the majority of the physical and chemical characteristics were discovered to be above the permissible limits. A. flavus demonstrated outstanding metal resistance to As, Cu, Cr, Zn, Hg, Pb, Ni, and Cd on Potato Dextrose Agar (PDA) plates at concentrations of up to 500 g mL-1. At 4 g L-1 concentrations, A. flavus biomass decolorized up to 11.2-46.5%. Furthermore, 35°C was found to be the optimal temperature for efficient decolourisation of A. flavus biomass. The toxicity of 35°C-treated wastewater on V. mungo and prawn larvae was significantly reduced. These findings indicate that the biomass of A. flavus can be used to decolorize dyeing industry wastewater.
Collapse
Affiliation(s)
- N Prabhu
- Department of Research and Innovations, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602 105, Tamil Nadu, India
| | - Amal Abdullah A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sumathy Rengarajan
- Department of Biotechnology, Valliammal College for Women, E-9, Anna Nagar East, Chennai, 600102, India
| | - K Gajendiran
- PG and Research Department of Microbiology, M.G.R. College, Hosur, 635 130, Tamil Nadu, India
| | - Devarajan Natarajan
- Natural Drug Research Lab, Department of Biotechnology, Periyar University, Salem 636 011, Tamil Nadu, India.
| |
Collapse
|
8
|
Zhu X, Xiang Q, Chen L, Chen J, Wang L, Jiang N, Hao X, Zhang H, Wang X, Li Y, Omer R, Zhang L, Wang Y, Zhuang Y, Huang J. Engineered Bacillus subtilis Biofilm@Biochar living materials for in-situ sensing and bioremediation of heavy metal ions pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133119. [PMID: 38134689 DOI: 10.1016/j.jhazmat.2023.133119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The simultaneous sensing and remediation of multiple heavy metal ions in wastewater or soil with microorganisms is currently a significant challenge. In this study, the microorganism Bacillus subtilis was used as a chassis organism to construct two genetic circuits for sensing and adsorbing heavy-metal ions. The engineered biosensor can sense three heavy metal ions (0.1-75 μM of Pb2+ and Cu2+, 0.01-3.5 μM of Hg2+) in situ real-time with high sensitivity. The engineered B. subtilis TasA-metallothionein (TasA-MT) biofilm can specifically adsorb metal ions from the environment, exhibiting remarkable removal efficiencies of 99.5% for Pb2+, 99.9% for Hg2+and 99.5% for Cu2+ in water. Furthermore, this engineered strain (as a biosensor and absorber of Pb2+, Cu2+, and Hg2+) was incubated with biochar to form a hybrid biofilm@biochar (BBC) material that could be applied in the bioremediation of heavy metal ions. The results showed that BBC material not only significantly reduced exchangeable Pb2+ in the soil but also reduced Pb2+ accumulation in maize plants. In addition, it enhanced maize growth and biomass. In conclusion, this study examined the potential applications of biosensors and hybrid living materials constructed using sensing and adsorption circuits in B. subtilis, providing rapid and cost-effective tools for sensing and remediating multiple heavy metal ions (Pb2+, Hg2+, and Cu2+).
Collapse
Affiliation(s)
- Xiaojuan Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Qinyuan Xiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Lin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianshu Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Lei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Ning Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiangrui Hao
- Shanghai Nong Le Biological Products Company Limited (NLBP), Shanghai 201419, PR China
| | - Hongyan Zhang
- Shanghai Nong Le Biological Products Company Limited (NLBP), Shanghai 201419, PR China
| | - Xinhua Wang
- Shanghai Jiao Tong University School of Agriculture and Biology, Shanghai 200240, PR China
| | - Yaqian Li
- Shanghai Jiao Tong University School of Agriculture and Biology, Shanghai 200240, PR China
| | - Rabia Omer
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Lingfan Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China.
| |
Collapse
|
9
|
Nguyen AH, Oh S. Side effects of the addition of an adsorbent for the nitrification performance of a microbiome in the treatment of an antibiotic mixture. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133034. [PMID: 38035522 DOI: 10.1016/j.jhazmat.2023.133034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
This work determined the effect of biochar (BC) as an adsorbent on the nitrifying microbiome in regulating the removal, transformation, fate, toxicity, and potential environmental consequences of an antibiotic mixture containing oxytetracycline (OTC) and sulfamethoxazole (SMX). Despite the beneficial role of BC as reported in the literature, the present study revealed side effects for the nitrifying microbiome and its functioning arising from the presence of BC. Long-term monitoring revealed severe disruption to nitratation via the inhibition of both nitrite oxidizers (e.g., Nitrospira defluvii) and potential comammox species (e.g., Ca. Nitrospira nitrificans). Byproducts (BPs) more toxic than the parent compounds were found to persist at a high relative abundance, particularly in the presence of BC. Quantitative structure-activity relationship modeling determined that the physicochemical properties of the toxic BPs significantly differed from those of OTC and SMX. The results suggested that the BPs tended to mobilize and accumulate on the surface of the solids in the system (i.e., the BC and biofilm), disrupting the nitrifiers growing at the interface. Collectively, this study provides novel insights, demonstrating that the addition of adsorbents to biological systems may not necessarily be beneficial; rather, they may generate side effects for specific bacteria that have important ecosystem functions.
Collapse
Affiliation(s)
- Anh H Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea.
| |
Collapse
|
10
|
Chau TP, Rajkumar R, S Aloufi A, Krishnan R, Tharifkhan SA. Textile effluents decolourization potential of metal tolerant Aspergillus species and optimization of biomass concentration and temperature. ENVIRONMENTAL RESEARCH 2023:116294. [PMID: 37268209 DOI: 10.1016/j.envres.2023.116294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
This research was performed to assess the physicochemical properties of textile effluents collected from different sampling points (industrial park, Hosur, Tamil Nadu, India) and also evaluate the multiple metal tolerance efficiency of pre-isolated Aspergillus flavus. Moreover, their textile effluent decolourization potential was investigated and quantity and temperature required for effective bioremediation was optimized. About 5 textile effluent samples (S0, S1, S2, S3, and S4) were collected from various sampling points and noted that certain physicochemical properties (pH: 9.64 ± 0.38, Turbidity: 18.39 ± 1.4 NTU, Cl-: 3185.38 ± 15.8 mg L-1, BOD: 82.52 ± 6.9 mg L-1, COD: 342.28 ± 8.9 mg L-1, Ni: 74.21 ± 4.31 mg L-1, Cr: 48.52 ± 18.34 mg L-1, Cd: 34.85 ± 1.2 mg L-1, Zn: 25.52 ± 2.4 mg L-1, Pb: 11.25 ± 1.5 mg L-1, Hg: 1.8 ± 0.05 mg L-1, and As: 7.1 ± 0.41 mg L-1) were beyond the permissible limits. The A. flavus, showed remarkable metal tolerance to Pb, As, Cr, Ni, Cu, Cd, Hg, and Zn on PDA plates with elevated dosage up to 1000 μg mL-1. The optimal dosage required for effective decolourization was found as 3 g (48.2%) and compare to dead biomass (42.1%) of A. flavus, the viable biomass showed remarkable decolourization activity on textile effluents in a short duration of treatment process. The optimal temperature for effective decolourization by viable biomass was found at 32 ᵒC. The toxic effects of S4 samples treated at 32 ᵒC on O. sativa as well as brine shrimp larvae were significantly reduced. These findings show that pre-isolated A. flavus viable biomass can be used to decolorize metal-enriched textile effluent. Furthermore, the effectiveness of their metals remediation should be investigated using ex-situ and ex-vivo approaches.
Collapse
Affiliation(s)
- Tan Phat Chau
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - R Rajkumar
- Department of Livestock Products Technology, (Meat Science) Veterinary College and Research Institute, Namakkal, Tamil Nadu, India
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | |
Collapse
|
11
|
Wu Y, Xia C, Zhang L, Thanh NC, Al Obaid S, Alfarraj S, Jhanani GK. Organic gelatin-coated ZnNPs for the production of biodegradable biopolymer films. ENVIRONMENTAL RESEARCH 2023; 231:116059. [PMID: 37149019 DOI: 10.1016/j.envres.2023.116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Petroleum-based polymers have raised significant environmental concerns. It is critical to create compostable, good biocompatibility, and nontoxic polymers to replace petroleum-based polymers. Thus, this research was performed to extract the gelatin from fish waste cartilage and coated it over the surface of spherical shaped pre-synthesized ZnNPs along with a suitable plasticizer to produce the biodegradable film. The presence of gelatin on the surface of ZnNPs was first confirmed using UV-visible spectrophotometers, as well as the characteristic functional groups involved in the coating were investigated using Fourier-Transform Infrared Spectroscopy (FTIR). The morphological appearance of gelatin coated ZnNPs was ranged from 41.43 to 52.31 nm, the shape was found as platonic to pentagonal shape, and the fabricated film was observed through Scanning Electron Microscope (SEM). The thickness, density, and tensile strength of fabricated film were found to be 0.04-0.10 mm, 0.10-0.27 g/cm3, and 31.7 kPa. These results imply that the fish waste cartilage gelatin coated ZnNPs-based nanocomposite can be used for film preparation as well as a wrapper for food and pharmaceutical packaging.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials, Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials, Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Li Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research, Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Nguyen Chi Thanh
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, 700000, Viet Nam
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India.
| |
Collapse
|
12
|
Jan T, Arif M, Anwar S, Muhammad D. Biochar-microbes-FYM Nexus for Maize Productivity, Macro-nutrients’ Availability and Soil Organic Carbon Under Semi-arid Climate. GESUNDE PFLANZEN 2023. [DOI: 10.1007/s10343-023-00872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 09/01/2023]
|
13
|
Guo Y, Qiu B, Khan Z, Jiang H, Ji Q, Fan Q, Khan MM. The potential for biochar application in "Shatangju" ( Citrus reticulate cv.) orchard on acid red soil: Biochar prepared from its organic waste in an orchard. FRONTIERS IN PLANT SCIENCE 2022; 13:1001740. [PMID: 36340399 PMCID: PMC9632651 DOI: 10.3389/fpls.2022.1001740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Carbonization of agricultural and forestry wastes is the main use of biochar application in agriculture. In this study, the effects of biochar on the physical and chemical properties of soil and diversity in rhizosphere microorganisms, leaf nutrients and fruit quality of acid red soil in "Shatangju" (Citrus reticulate cv.) orchard were studied using organic wastes and small-scale carbonization furnaces from orchards were used to produce biochar. The results showed that the finished rate of biochar produced from the organic wastes in the orchard was approximately 37%, and the carbon content of the finished product was as high as 80%. The results suggested that the biochar produced in the orchard could meet the annual consumption of the orchard. Applying biochar can improve the physical and chemical properties of acid soil in the "Shatangju" orchard by enhancing the availability of various mineral nutrients such as nitrogen, phosphorus, potassium, calcium, magnesium and boron. The species and quantity of root and rhizosphere microbial communities (fungi, bacteria and archaea) increased, and the dominant bacterial group changed, manifested in the increase in microbial diversity. Biochar directly affected the soil pH value and increased the soil organic carbon content, which may be the main reason for the change in microbial diversity in the soil and rhizosphere of "Shatangju" in the orchard and pot tests. The fruit quality of each treatment group with biochar was also better than that of the control group and improved fruit coloring. In the pure soil test, whether or not chemical fertilizer was applied, 3% biochar amendments can provide a suitable pH value for "Shatangju" growth and are relatively stable. Regardless of whether or not fertilizer was applied, 1.5%-3% biochar improved the soil in the pot test. In the field, the biochar at a rate of 2.4 kg/plant to 3.6 kg/plant, respectively, was the best in improving soil physical and chemical properties, foliar nutrition and fruit quality. Therefore, the amount of biochar added in the open environment (if the garden) can be slightly adjusted according to the results of the closed environment test (pure soil test and pot test). In this experiment, we explored the self-recycling of organic carbon, mainly through the preparation of a simple small-scale biochar furnace suitable for the use by orchards, and selected the appropriate amount of biochar to improve the physical and chemical conditions of "Shatangju" orchard soil and increase fruit quality.
Collapse
Affiliation(s)
- Yanjun Guo
- Fruit Tree Research Institute/Life Sciences College of Zhaoqing University, Zhaoqing, China
| | - Baoli Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Hui Jiang
- Fruit Tree Research Institute/Life Sciences College of Zhaoqing University, Zhaoqing, China
| | - Qianhua Ji
- Fruit Tree Research Institute/Life Sciences College of Zhaoqing University, Zhaoqing, China
| | - Qizhou Fan
- Engineering College of Huazhong Agricultural University, Wuhan, China
| | | |
Collapse
|