1
|
Rafat M, Ghazy MA, Nasr M. Phycoremediation of 1,4 dioxane-laden wastewater: A Techno-economic and sustainable development approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122387. [PMID: 39243638 DOI: 10.1016/j.jenvman.2024.122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Microalgal tolerance to emerging contaminants (ECs) such as 1,4 dioxane (DXN) and its impact on phycoremediation performance, algal growth, biomolecules generated, and recycling the produced biomass for biochar production has been rarely reported. Hence, Chlorella vulgaris was cultivated in DXN-free wastewater (WW1) and 100 mg L-1 DXN-laden wastewater (WW2) in 1-liter photobioreactors with an operating volume of 800 ml under controlled conditions: temperature (25 ± 1 °C), light intensity (351 μmol m-2s-1), and photoperiod (12 h light:12 h dark). Interestingly, this microalgal-based system achieved up to 32.79% removal efficiency of DXN in WW2. In addition, there was no significant difference in the removal of COD (90.6% and 86.8%) and NH4-N (74.5% and 76.8%) between WW1 and WW2, respectively. Moreover, the variation in C. vulgaris growth, pigments, lipid, and carbohydrate contents between the two applied wastewaters was negligible. However, there was a significant increase in the protein yield upon exposure to DXN, suggesting the ability of C. vulgaris to secrete various antioxidant and degrading enzymes to detoxify the contaminant. These results were validated by FTIR, SEM, and EDX analysis of C. vulgaris biomass with and without DXN exposure. The harvested biomass was thermally treated at 350 °C for 60 min in an oxygen-free environment. The biochars generated from both algal systems were characterized by comparable morphologies and elemental profiles with sufficient C and N contents, indicating their applicability to enhance the soil properties. The economic evaluation of the combined phycoremediation/pyrolysis system demonstrated a net profit of 596 USD⋅y-1 with a payback period of 6.2 years and fulfilled the objectives of several sustainable development goals (SDGs). This is the first study to point to C. vulgaris as a robust microalgal strain in remediating DXN-laden wastewater accompanied by the potential recyclability of the biomass produced for biochar production.
Collapse
Affiliation(s)
- May Rafat
- Biotechnology Program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt; Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, 21526, Egypt
| | - Mohamed A Ghazy
- Biotechnology Program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt; Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - Mahmoud Nasr
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt; Sanitary Engineering Department, Faculty of Engineering, Alexandria University, P.O. Box 21544, Alexandria, 21526, Egypt
| |
Collapse
|
2
|
Bach C, Boiteux V, Dauchy X. France-Wide Monitoring of 1,4-Dioxane in Raw and Treated Water: Occurrence and Exposure Via Drinking Water Consumption. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:95-104. [PMID: 39085588 PMCID: PMC11377507 DOI: 10.1007/s00244-024-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
In recent years, 1,4-dioxane has emerged as a pollutant of increasing concern following widespread detection in the aquatic environment of several countries. This persistent contaminant with specific physical and chemical properties can be rapidly dispersed and transported to river banks, groundwater and drinking water. Given the limited data on its occurrence in France, it was considered necessary to assess the potential exposure of the French population to this compound in drinking water. An analytical method based on solid-phase extraction (SPE) combined with gas chromatography tandem mass spectrometry (GC-MS/MS) was developed and validated during this study with a limit of quantification (LOQ) of 0.15 µg/L. Recoveries in natural water matrices ranged from 113 to 117% with a relative bias not exceeding 17%. This method was used for a nationwide campaign at almost 300 sites, evenly distributed over 101 French départements (administrative units), including some that were overseas. Of the 587 samples analysed, only 8% had a concentration that was greater than or equal to the LOQ. 1,4-Dioxane was detected mainly (63%) in raw and treated water from sites associated with historical industrial practices related to the use of chlorinated solvents. Concentrations of 1,4-dioxane ranging from 0.19 to 2.85 µg/L were observed in the raw water and from 0.18 to 2.46 µg/L in the treated water. Drinking water treatment plants using ozonation, granular activated carbon and chlorination have limited effectiveness in the removal of 1,4-dioxane. The results of this study are the first step towards bridging the knowledge gap in the occurrence of 1,4-dioxane in France.
Collapse
Affiliation(s)
- Cristina Bach
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France.
| | - Virginie Boiteux
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France
| | - Xavier Dauchy
- Nancy Laboratory for Hydrology, Water Chemistry Unit, ANSES, 40 rue Lionnois, 54000, Nancy, France
| |
Collapse
|
3
|
Rasal RK, Badsha I, Shellaiah M, Subramanian K, Gayathri A, Hirad AH, Kaliaperumal K, Devasena T. Fabrication of Curcumin-Based Electrochemical Nanosensors for the Detection of Environmental Pollutants: 1,4-Dioxane and Hydrazine. BIOSENSORS 2024; 14:291. [PMID: 38920595 PMCID: PMC11202126 DOI: 10.3390/bios14060291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
This work reports the development of novel curcuminoid-based electrochemical sensors for the detection of environmental pollutants from water. In this study, the first set of electrochemical experiments was carried out using curcumin-conjugated multi-walled carbon nanotubes (MWCNT-CM) for 1,4-dioxane detection. The MWCNT-CM/GCE showed good sensitivity (103.25 nA nM-1 cm-2 in the linear range 1 nM to 1 µM), with LOD of 35.71 pM and LOQ of 108.21 pM. The second set of electrochemical experiments was carried out with bisdemethoxy curcumin analog quantum dots (BDMCAQD) for hydrazine detection. The BDMCAQD/GCE exhibited good sensitivity (74.96 nA nM-1 cm-2 in the linear range 100 nM to 1 µM), with LOD of 10 nM and LOQ of 44.93 nM. Thus, this work will serve as a reference for the fabrication of metal-free electrochemical sensors using curcuminoids as the redox mediator for the enhanced detection of environmental pollutants.
Collapse
Affiliation(s)
- Renjith Kumar Rasal
- Centre for Nanoscience and Technology, Anna University, Chennai 600025, India; (R.K.R.); (I.B.)
| | - Iffath Badsha
- Centre for Nanoscience and Technology, Anna University, Chennai 600025, India; (R.K.R.); (I.B.)
| | - Muthaiah Shellaiah
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India;
| | - Kumaran Subramanian
- P. G. Research Department of Microbiology, Sri Sankara Arts and Science College (Autonomous), Kanchipuram 631561, India;
| | - Abinaya Gayathri
- Unit of Marine Biomaterials and Natural Product Chemistry Research, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India;
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Kumaravel Kaliaperumal
- Unit of Marine Biomaterials and Natural Product Chemistry Research, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India;
| | - Thiyagarajan Devasena
- Centre for Nanoscience and Technology, Anna University, Chennai 600025, India; (R.K.R.); (I.B.)
| |
Collapse
|
4
|
Guarin TC, Li L, Haak L, Teel L, Pagilla KR. Contaminants of emerging concern reduction and microbial community characterization across a three-barrier advanced water treatment system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169637. [PMID: 38157893 DOI: 10.1016/j.scitotenv.2023.169637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
This research investigated the removal of contaminants of emerging concern (CECs) and characterized the microbial community across an advanced water treatment (AWT) train consisting of Coagulation/Flocculation/Clarification/Granular Media Filtration (CFCGMF), Ozone-Biological Activated Carbon Filtration (O3/BAC), Granular Activated Carbon filtration, Ultraviolet Disinfection, and Cartridge Filtration (GAC/UV/CF). The AWT train successfully met the goals of CECs and bulk organics removal. The microbial community at each treatment step of the AWT train was characterized using 16S rRNA sequencing on the Illumina MiSeq platform generated from DNA extracted from liquid and solid (treatment media) samples taken along the treatment train. Differences in the microbial community structure were observed. The dominant operational taxonomic units (OTU) decreased along the treatment train, but the treatment steps did impact the microbial community composition downstream of each unit process. These results provide insights into microbial ecology in advanced water treatment systems, which are influenced and shaped by each treatment step, the microbial community interactions, and their potential metabolic contribution to CECs degradation.
Collapse
Affiliation(s)
- Tatiana C Guarin
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA; ε-BiO: UNAB's Circular Bioeconomy Research Center, Universidad Autónoma de Bucaramanga, Colombia
| | - Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA
| | - Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA
| | - Lydia Teel
- Truckee Meadows Water Authority, Reno, NV, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
5
|
Sahoo TP, Kumar MA. Remediation of phthalate acid esters from contaminated environment—Insights on the bioremedial approaches and future perspectives. Heliyon 2023; 9:e14945. [PMID: 37025882 PMCID: PMC10070671 DOI: 10.1016/j.heliyon.2023.e14945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Phthalates are well-known emerging pollutants that are toxic to the environment and human health. Phthalates are lipophilic chemicals used as plasticizers in many of the items for improving their material properties. These compounds are not chemically bound and are released to the surroundings directly. Phthalate acid esters (PAEs) are endocrine disruptors and can interfere with hormones, which can cause issues with development and reproduction, thus there is a huge concern over their existence in various ecological surroundings. The purpose of this review is to explore the occurrence, fate, and concentration of phthalates in various environmental matrices. This article also covers the phthalate degradation process, mechanism, and outcomes. Besides the conventional treatment technology, the paper also aims at the recent advancements in various physical, chemical, and biological approaches developed for phthalate degradation. In this paper, a special focus has been given on the diverse microbial entities and their bioremedial mechanisms executes the PAEs removal. Critically, the analyses method for determining intermediate products generated during phthalate biotransformation have been discussed. Concluisvely, the challenges, limitations, knowledge gaps and future opportunities of bioremediation and their significant role in ecology have also been highlighted.
Collapse
|