1
|
Wang Q, Ding Y, Dahlgren RA, Sun Y, Gu J, Li Y, Liu T, Wang X. Ultrafine V 2O 5-anchored 3D N-doped carbon nanocomposite with augmented dual-enzyme mimetic activity for evaluating total antioxidant capacity. Anal Chim Acta 2023; 1252:341072. [PMID: 36935159 DOI: 10.1016/j.aca.2023.341072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Total antioxidant capacity (TAC) can be evaluated by detecting the content of antioxidants, such as ascorbic acid, based on the enzyme-mimetic activity of nanomaterials. Herein, we fabricated a 3D-V2O5/NC nanocomposite using a self-templating strategy, which achieved ultrafine particles (∼2.5 nm), a porous carbon layer, large specific surface area (152.4 m2/g), N-doping and heterogeneous structure. The strong catalytic activity of 3D-V2O5/NC resulted from the integrated effect between the ultrafine structure of V2O5 nanoparticles and the 3D porous nitrogen-doped carbon framework, effectively increasing the number of active sites. This nanozyme presented a higher catalytic activity than its components or precursors in the nanocomposite (e.g., VN/NC, NC, V2O5, and VO2/g-C3N4). ROS scavenging experiments confirmed that the dual enzyme-like activity of 3D-V2O5/NC (catalase-like and oxidase-like) resulted from their co-participation of ‧O2-, h+ and ‧OH, among which ‧O2- played a crucial role in the catalytic color reaction. By virtue of the 3D-V2O5/NC nanoenzyme activity and TMB as a chromogenic substrate, the mixed system of 3D-V2O5/NC + TMB + H2O2 provided a low detection limit (0.03 μM) and suitable recovery (93.0-109.5%) for AA. Additionally, a smartphone-based colorimetric application was developed employing "Thing Identify" software to evaluate TAC in beverages. The colorimetric sensor and smartphone-detection platform provide a better or comparable analytical performance for TAC assessment in comparison to commercial ABTS test kits. The newly developed smartphone-based colorimetric platform presents several prominent advantageous, such as low cost, simple/rapid operation, and feasibility for outdoor use.
Collapse
Affiliation(s)
- Qi Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yongli Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, UC, 95616, USA
| | - Yue Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jingjing Gu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuhao Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tingting Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|