1
|
Croft DP, Utell MJ, Hopke PK, Liu H, Lin S, Thurston SW, Thandra S, Chen Y, Islam MR, Thevenet-Morrison K, Johnston CJ, Zhao T, Yount C, Rich DQ. Comparison of the rate of healthcare encounters for influenza from source-specific PM 2.5 before and after tier 3 vehicle standards in New York state. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:205-213. [PMID: 39127830 PMCID: PMC12009738 DOI: 10.1038/s41370-024-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Influenza healthcare encounters in adults associated with specific sources of PM2.5 is an area of active research. OBJECTIVE Following 2017 legislation requiring reductions in emissions from light-duty vehicles, we hypothesized a reduced rate of influenza healthcare encounters would be associated with concentrations of PM2.5 from traffic sources in the early implementation period of this regulation (2017-2019). METHODS We used the Statewide Planning and Research Cooperative System (SPARCS) to study adult patients hospitalized (N = 5328) or treated in the emergency department (N = 18,247) for influenza in New York State. Using a modified case-crossover design, we estimated the excess rate (ER) of influenza hospitalizations and emergency department visits associated with interquartile range increases in source-specific PM2.5 concentrations (e.g., spark-ignition emissions [GAS], biomass burning [BB], diesel [DIE]) in lag day(s) 0, 0-3 and 0-6. We then evaluated whether ERs differed after Tier 3 implementation (2017-2019) compared to the period prior to implementation (2014-2016). RESULTS Each interquartile range increase in DIE in lag days 0-6 was associated with a 21.3% increased rate of influenza hospitalization (95% CI: 6.9, 37.6) in the 2014-2016 period, and a 6.3% decreased rate (95% CI: -12.7, 0.5) in the 2017-2019 period. The GAS/influenza excess rates were larger in the 2017-2019 period than the 2014-2016 period for emergency department visits. We also observed a larger ER associated with increased BB in the 2017-2019 period compared to the 2014-2016 period. IMPACT STATEMENT We present an accountability study on the impact of the early implementation period of the Tier 3 vehicle emission standards on the association between specific sources of PM2.5 air pollution on influenza healthcare encounters in New York State. We found that the association between gasoline emissions and influenza healthcare encounters did not lessen in magnitude between periods, possibly because the emissions standards were not yet fully implemented. The reduction in the rates of influenza healthcare encounters associated with diesel emissions may be reflective of past policies to reduce the toxicity of diesel emissions. Accountability studies can help policy makers and environmental scientists better understand the timing of pollution changes and associated health effects.
Collapse
Affiliation(s)
- Daniel P Croft
- Pulmonary and Critical Care Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Mark J Utell
- Pulmonary and Critical Care Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA
| | - Han Liu
- Population Studies and Training Center, Brown University, Providence, RI, USA
| | - Shao Lin
- Department of Environmental Health Sciences. University at Albany, the State University of New York, Albany, NY, USA
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sathvik Thandra
- Department of Environmental Health Sciences. University at Albany, the State University of New York, Albany, NY, USA
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Md Rayhanul Islam
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Kelly Thevenet-Morrison
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Carl J Johnston
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Tianming Zhao
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine Yount
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - David Q Rich
- Pulmonary and Critical Care Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
2
|
De Potter T, Motoc A, Verachtert E, Hooyberghs H, Tanaka K, Belsack D, De Cock D, Fierens F, Tsugu T, Nawrot T, Claeys M, Cosyns B, Argacha JF. Residential exposome and the risk of coronary obstruction and myocardial ischemia detected by coronary computed tomography. Eur J Prev Cardiol 2025:zwaf090. [PMID: 39968904 DOI: 10.1093/eurjpc/zwaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND AND AIMS To assess independent impacts of air and noise pollution, and residential green exposure on non-invasively derived coronary obstruction and myocardial ischemia. METHODS Consecutive patients screened by coronary computed tomography angiography (CCTA) for stable chest pain between 01/01/2019 and 31/12/2020 were included in a registry. Exposure associations between residential PM2.5 (particulate matter <2.5 micrometres), NO2 (nitric dioxide), major road distance, airport distance and normalized difference vegetation index (NDVI), and obstructive coronary artery disease (OCAD, stenosis ≥50%) and abnormal fractional flow reserve (FFRCT<80%) measurement were assessed by propensity score-adjusted logistic regression. Subgroup analysis was performed according to Framingham low (<10%) and high (>20%) 10-year coronary heart disease risk categories. RESULTS 2620 patients were enrolled, including 420(16%) FFRCT analyses. OCAD was reported in 518(20%) patients and abnormal FFRCT in 276(11%). People with OCAD lived closer to the airport (10.841 [7.869-19.022]km vs. 12.297 [8.691-22.843]km, p<0.001). People living closer to the airport had more cardiovascular and socio-economic risk factors. Distance to airport decreased OCAD risk (OR 0.983, 95%CI 0.974-0.992, per 1km) in univariable analysis. After propensity score (PS) adjustment, environmental stressors were not significantly associated with OCAD, regardless of risk categories. Only distance to major road decreased abnormal FFRCT risk (OR 0.634, 95%CI: 0.421-0.926, per 1km) in high-risk patients after PS adjustment. CONCLUSIONS We found no clear environmental associations with CT-derived coronary obstruction or ischemia. However, airport proximity was linked to OCAD risk via cardiovascular and socio-economic factors, while major road proximity was independently associated with myocardial ischemia in high-CV-risk patients, warranting further investigation.
Collapse
Affiliation(s)
- Tom De Potter
- Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andreea Motoc
- Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Verachtert
- VITO Health, Flemish Institute for Technological Research (VITO)
| | - Hans Hooyberghs
- VITO Health, Flemish Institute for Technological Research (VITO)
| | - Kaoru Tanaka
- Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dries Belsack
- Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Diederik De Cock
- Biostatistics and Medical Informatics Research Group, Department of Public Health, Vrije Universiteit Brussel, Belgium
| | - Frans Fierens
- Belgian Interregional Environment Agency, Brussels, Belgium
| | - Toshimitsu Tsugu
- Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tim Nawrot
- Research Unit Environment and Health, K.U. Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Marc Claeys
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Bernard Cosyns
- Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jean-François Argacha
- Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Lin S, Xue Y, Thandra S, Qi Q, Thurston SW, Croft DP, Utell MJ, Hopke PK, Rich DQ. Source specific fine particles and rates of asthma and COPD healthcare encounters pre- and post-implementation of the Tier 3 vehicle emissions control regulations. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136737. [PMID: 39642739 DOI: 10.1016/j.jhazmat.2024.136737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
We examined associations between seven source-specific PM2.5 concentrations and rates of asthma and COPD hospitalizations and emergency department (ED) visits in New York State and compared the changes in excess rates (ERs) between pre- (2014-2016) and post-implementation (2017-2019) of the Tier 3 automobile emission controls on new vehicles policy. A modified time-stratified case-crossover design and conditional logistic regression were employed to estimate the ERs of asthma and COPD hospitalizations and ED visits associated with interquartile range (IQR) increases in source-specific PM2.5 concentrations. The 7 PM2.5 sources were spark-ignition emissions (GAS), diesel (DIE), biomass burning (BB), road dust (RD), secondary nitrate (SN), secondary sulfate (SS), and pyrolyzed organic rich (OP). Residual PM2.5 (PM2.5 - specific source [e.g., GAS]), daily temperature, relative humidity, weekday, and holidays were included in the model. IQR increases in GAS, SS, RD, BB, and SN were associated with increased ERs of asthma ED visits (highest ERs: 0.5 %-3.1 %), while a negative association was observed with DIE and OP. The rate of asthma hospitalizations was associated with increased RD concentrations (ERs: 1.3 %-1.7 %). Both COPD ED visit and hospitalization rates were associated with increased OP (ERs: 2.1 %-3.4 %), and increased SS was positively associated with COPD ED visits (ER = 3.8 %). In summary, after Tier 3 implementation (2017-2019), we found lower ERs for COPD admissions associated with BB, RD, SN, and SS compared to 2014-2016. However, rates of asthma ED visits associated with source-specific PM2.5 concentrations were generally higher for all sources, except DIE, post- versus pre-implementation, requiring further research for validation.
Collapse
Affiliation(s)
- Shao Lin
- Department of Environmental Health Sciences, College of Integrated Health Science, University at Albany, the State University of New York, Albany, New York; Department of Epidemiology/Biostatistics, College of Integrated Health Science, University at Albany, the State University of New York, Albany, New York
| | - Yukang Xue
- Department of Educational and Counseling Psychology, University at Albany, the State University of New York, Albany, New York
| | - Sathvik Thandra
- Department of Mathematics and Statistics, University at Albany, State University of New York, Albany, New York
| | - Quan Qi
- Department of Economics, University at Albany, the State University of New York, Albany, New York
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | - Daniel P Croft
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, New York
| | - Mark J Utell
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, New York
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York; Institute for a Sustainable Environment, Clarkson University, Potsdam, New York
| | - David Q Rich
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, New York; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
4
|
Zhao T, Hopke PK, Utell MJ, Croft DP, Thurston SW, Lin S, Ling FS, Chen Y, Yount CS, Rich DQ. A case-crossover study of ST-elevation myocardial infarction and organic carbon and source-specific PM 2.5 concentrations in Monroe County, New York. Front Public Health 2024; 12:1369698. [PMID: 39148650 PMCID: PMC11324441 DOI: 10.3389/fpubh.2024.1369698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Background Previous work reported increased rates of cardiovascular hospitalizations associated with increased source-specific PM2.5 concentrations in New York State, despite decreased PM2.5 concentrations. We also found increased rates of ST elevation myocardial infarction (STEMI) associated with short-term increases in concentrations of ultrafine particles and other traffic-related pollutants in the 2014-2016 period, but not during 2017-2019 in Rochester. Changes in PM2.5 composition and sources resulting from air quality policies (e.g., Tier 3 light-duty vehicles) may explain the differences. Thus, this study aimed to estimate whether rates of STEMI were associated with organic carbon and source-specific PM2.5 concentrations. Methods Using STEMI patients treated at the University of Rochester Medical Center, compositional and source-apportioned PM2.5 concentrations measured in Rochester, a time-stratified case-crossover design, and conditional logistic regression models, we estimated the rate of STEMI associated with increases in mean primary organic carbon (POC), secondary organic carbon (SOC), and source-specific PM2.5 concentrations on lag days 0, 0-3, and 0-6 during 2014-2019. Results The associations of an increased rate of STEMI with interquartile range (IQR) increases in spark-ignition emissions (GAS) and diesel (DIE) concentrations in the previous few days were not found from 2014 to 2019. However, IQR increases in GAS concentrations were associated with an increased rate of STEMI on the same day in the 2014-2016 period (Rate ratio [RR] = 1.69; 95% CI = 0.98, 2.94; 1.73 μg/m3). In addition, each IQR increase in mean SOC concentration in the previous 6 days was associated with an increased rate of STEMI, despite imprecision (RR = 1.14; 95% CI = 0.89, 1.45; 0.42 μg/m3). Conclusion Increased SOC concentrations may be associated with increased rates of STEMI, while there seems to be a declining trend in adverse effects of GAS on triggering of STEMI. These changes could be attributed to changes in PM2.5 composition and sources following the Tier 3 vehicle introduction.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
- Center for Air and Aquatic Resources Engineering and Sciences, Clarkson University, Potsdam, NY, United States
| | - Mark J Utell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel P Croft
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Shao Lin
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, Rensselaer, NY, United States
| | - Frederick S Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Catherine S Yount
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
5
|
Hopke PK, Chen Y, Chalupa DC, Rich DQ. Long term trends in source apportioned particle number concentrations in Rochester NY. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123708. [PMID: 38442826 DOI: 10.1016/j.envpol.2024.123708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 03/07/2024]
Abstract
During the past two decades, efforts have been made to further reduce particulate air pollution across New York State through various Federal and State policy implementations. Air quality has also been affected by economic drivers like the 2007-2009 recession and changing costs for different approaches to electricity generation. Prior work has focused on particulate matter with aerodynamic diameter ≤2.5 μm. However, there is also interest in the effects of ultrafine particles on health and the environment and analyses of changes in particle number concentrations (PNCs) are also of interest to assess the impacts of changing emissions. Particle number size distributions have been measured since 2005. Prior apportionments have been limited to seasonal analyses over a limited number of years because of software limitations. Thus, it has not been possible to perform trend analyses on the source-specific PNCs. Recent development have now permitted the analysis of larger data sets using Positive Matrix Factorization (PMF) including its diagnostics. Thus, this study separated and analyzed the hourly averaged size distributions from 2005 to 2019 into two data sets; October to March and April to September. Six factors were resolved for both data sets with sources identified as nucleation, traffic 1, traffic 2, fresh secondary inorganic aerosol (SIA), aged SIA, and O3-rich aerosol. The resulting source-specific PNCs were combined to provide continuous data sets and analyzed for trends. The trends were then examined with respect to the implementation of regulations and the timing of economic drivers. Nucleation was strongly reduced by the requirement of ultralow (<15 ppm) sulfur on-road diesel fuel in 2006. Secondary inorganic particles and O3-rich PNCs show strong summer peaks. Aged SIA was constant and then declined substantially in 2015 but rose in 2019. Traffic 1 and 2 have steadily declined bur rose in 2019.
Collapse
Affiliation(s)
- Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA.
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - David C Chalupa
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| |
Collapse
|
6
|
Argacha JF. [Effects of air pollution on cardiovascular events in cardiac intensive care units]. Ann Cardiol Angeiol (Paris) 2023; 72:101663. [PMID: 37688973 DOI: 10.1016/j.ancard.2023.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Many environmental factors influence the occurrence of cardiovascular events. Among these, air pollution is certainly the most harmful, due to its dual composition and effects. Air pollution is both particulate and gaseous, and can vary in concentration and composition according to its source and type of emission. Moreover, clinical effects are not only observed at long-term but also at short-term, following rapid deterioration in air quality. Air pollution must therefore be seen both as a risk factor for atherosclerotic disease, and as a trigger for cardiovascular events. These acute effects are essentially mediated by an increased risk of acute coronary syndromes and heart failure. The effects of air pollution on admissions for ventricular arrhythmias and arterial hypertension are also possible. The cardiotoxicity of pollution is mainly mediated by sympatho-vagal imbalance, by the initiation and amplification of an oxidative, inflammatory and pro-aggregatory cascade, and by endothelial dysfunction and activation of metalloproteinases. Although now well established, the consequences of air pollution on acute cardiovascular events require further investigation. Environmental cardiology is an emerging discipline whose current vision still fails to integrate qualitative aspects, such as the oxidative potential of particulate matter, and the joint effects of multiple environmental exposures.
Collapse
Affiliation(s)
- J F Argacha
- Département de cardiologie, Universitair Ziekenhuis Brussel, VUB, Belgium.
| |
Collapse
|
7
|
Jiang Y, Chen R, Peng W, Luo Y, Chen X, Jiang Q, Han B, Su G, Duan Y, Huo J, Qu X, Fu Q, Kan H. Hourly Ultrafine Particle Exposure and Acute Myocardial Infarction Onset: An Individual-Level Case-Crossover Study in Shanghai, China, 2015-2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1701-1711. [PMID: 36668989 DOI: 10.1021/acs.est.2c06651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Associations between ultrafine particles (UFPs) and hourly onset of acute myocardial infarction (AMI) have rarely been investigated. We aimed to evaluate the impacts of UFPs on AMI onset and the lag patterns. A time-stratified case-crossover study was performed among 20,867 AMI patients from 46 hospitals in Shanghai, China, between January 2015 and December 2020. Hourly data of AMI onset and number concentrations of nanoparticles of multiple size ranges below 0.10 μm (0.01-0.10, UFP/PNC0.01-0.10; 0.01-0.03, PNC0.01-0.03; 0.03-0.05, PNC0.03-0.05; and 0.05-0.10 μm, PNC0.05-0.10) were collected. Conditional logistic regressions were applied. Transient exposures to these nanoparticles were significantly associated with AMI onset, with almost linear exposure-response curves. These associations occurred immediately after exposure, lasted for approximately 6 h, and attenuated to be null thereafter. Each interquartile range increase in concentrations of total UFPs, PNC0.01-0.03, PNC0.03-0.05, and PNC0.05-0.10 during the preceding 0-6 h was associated with increments of 3.29, 2.08, 2.47, and 2.93% in AMI onset risk, respectively. The associations were stronger during warm season and at high temperatures and were robust after adjusting for criteria air pollutants. Our findings provide novel evidence that hourly UFP exposure is associated with immediate increase in AMI onset risk.
Collapse
Affiliation(s)
- Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China
| | - Yun Luo
- Department of Cardiology, Jiujiang No. 1 People's Hospital, Jiujiang 332000, China
| | - Xiaomin Chen
- Department of Cardiology, Ningbo First Hospital, Ningbo 315010, China
| | - Qianfeng Jiang
- Department of Cardiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi 563000, China
| | - Bingjiang Han
- Department of Cardiology, The Second Hospital of Jiaxing (The Second Affiliated Hospital of Jiaxing University), Jiaxing 314000, China
| | - Guohai Su
- Jinan Central Hospital, Jinan 250013, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Juntao Huo
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Xinkai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
- Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|