1
|
Wu M, Ailijiang N, Li N, Zaimire A, Chen H, He C, Zhang Y. Performance of pharmaceutical products removal in a bioelectrochemical system at low temperatures and changes in microbial communities and antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64493-64508. [PMID: 39102148 DOI: 10.1007/s11356-024-34577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Biological methods do not effectively remove pharmaceutical products (PPs) and antibiotic resistance genes (ARGs) from wastewater at low temperatures, leading to environmental pollution. Therefore, anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) were designed to improve the removal of PPs at low temperatures (10 ± 2 °C). The result shows that diclofenac (DIC) and ibuprofen (IBU) removals in the system with aerobic anodic and anaerobic cathodic chambers were 91.7% and 94.7%, higher than that in the control system (12.2 ± 1.5%, 36.5 ± 5.9%), and aerobic zone favors DIC and IBU removal; fluoroquinolone antibiotics (FQs) removals in the system with aerobic cathodic and anaerobic anodic chambers were 17.5-22.4% higher than that in the control system (9.1-22.4%), and anaerobic zone favors FQs removal. Analysis of microbial community structure and ARGs showed that different electrotrophic microbes (Flavobacterium, Acinetobacter, and Delftia) with cold-resistant ability to degrade PPs were enriched in different electrode combinations, and the aerobic cathodic chambers could remove certain ARGs. These results showed that AO-UBERs under intermittent electrical stimulation mode are an alternative method for the effective removal of PPs and ARGs at low temperatures.
Collapse
Affiliation(s)
- Mei Wu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China.
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China.
| | - Na Li
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Abudoushalamu Zaimire
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Hailiang Chen
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Yiming Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| |
Collapse
|
2
|
Li C, Ling Y, Zhang Y, Wang H, Wang H, Yan G, Dong W, Chang Y, Duan L. Insight into the microbial community of denitrification process using different solid carbon sources: Not only bacteria. J Environ Sci (China) 2024; 144:87-99. [PMID: 38802241 DOI: 10.1016/j.jes.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 05/29/2024]
Abstract
There is a lack of understanding about the bacterial, fungal and archaeal communities' composition of solid-phase denitrification (SPD) systems. We investigated four SPD systems with different carbon sources by analyzing microbial gene sequences based on operational taxonomic unit (OTU) and amplicon sequence variant (ASV). The results showed that the corncob-polyvinyl alcohol sodium alginate-polycaprolactone (CPSP, 0.86±0.04 mg NO3--N/(g·day)) and corncob (0.85±0.06 mg NO3--N/(g·day)) had better denitrification efficiency than polycaprolactone (PCL, 0.29±0.11 mg NO3--N/(g·day)) and polyvinyl alcohol-sodium alginate (PVA-SA, 0.24±0.07 mg NO3--N/(g·day)). The bacterial, fungal and archaeal microbial composition was significantly different among carbon source types such as Proteobacteria in PCL (OTU: 83.72%, ASV: 82.49%) and Rozellomycota in PVA-SA (OTU: 71.99%, ASV: 81.30%). ASV methods can read more microbial units than that of OTU and exhibit higher alpha diversity and classify some species that had not been identified by OTU such as Nanoarchaeota phylum, unclassified_ f_ Xanthobacteraceae genus, etc., indicating ASV may be more conducive to understand SPD microbial communities. The co-occurring network showed some correlation between the bacteria fungi and archaea species, indicating different species may collaborate in SPD systems. Similar KEGG function prediction results were obtained in two bioinformatic methods generally and some fungi and archaea functions should not be ignored in SPD systems. These results may be beneficial for understanding microbial communities in SPD systems.
Collapse
Affiliation(s)
- Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Ding J, Yang W, Liu X, Zhao Q, Dong W, Zhang C, Liu H, Zhao Y. Unraveling the rate-limiting step in microorganisms' mediation of denitrification and phosphorus absorption/transport processes in a highly regulated river-lake system. Front Microbiol 2023; 14:1258659. [PMID: 37901815 PMCID: PMC10613053 DOI: 10.3389/fmicb.2023.1258659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
River-lake ecosystems are indispensable hubs for water transfers and flow regulation engineering, which have frequent and complex artificial hydrological regulation processes, and the water quality is often unstable. Microorganisms usually affect these systems by driving the nutrient cycling process. Thus, understanding the key biochemical rate-limiting steps under highly regulated conditions was critical for the water quality stability of river-lake ecosystems. This study investigated how the key microorganisms and genes involving nitrogen and phosphorus cycling contributed to the stability of water by combining 16S rRNA and metagenomic sequencing using the Dongping river-lake system as the case study. The results showed that nitrogen and phosphorus concentrations were significantly lower in lake zones than in river inflow and outflow zones (p < 0.05). Pseudomonas, Acinetobacter, and Microbacterium were the key microorganisms associated with nitrate and phosphate removal. These microorganisms contributed to key genes that promote denitrification (nirB/narG/narH/nasA) and phosphorus absorption and transport (pstA/pstB/pstC/pstS). Partial least squares path modeling (PLS-PM) revealed that environmental factors (especially flow velocity and COD concentration) have a significant negative effect on the key microbial abundance (p < 0.001). Our study provides theoretical support for the effective management and protection of water transfer and the regulation function of the river-lake system.
Collapse
Affiliation(s)
- Jiewei Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xinyu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Qingqing Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Weiping Dong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Chuqi Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Haifei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Wang W, Dong L, Zhai T, Wang W, Wu H, Kong F, Cui Y, Wang S. Bio-clogging mitigation in constructed wetland using microbial fuel cells with novel hybrid air-photocathode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163423. [PMID: 37062319 DOI: 10.1016/j.scitotenv.2023.163423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Excessive accumulation of extracellular polymeric substances (EPS) in constructed wetland (CW) substrate can lead to bio-clogging and affect the long-term stable operation of CW. In this study, a microbial fuel cell (MFC) was coupled with air-photocathode to mitigate CW bio-clogging by enhancing the micro-electric field environment. Because TiO2/biochar could catalyze and accelerate oxygen reduction reaction, further promoting the gain of electric energy, the electricity generation of the tandem CW-photocatalytic fuel cell (CW-PFC) reached 90.78 mW m-3. After bio-clogging was mitigated in situ in tandem CW-PFC, the porosity of CW could be restored to about 62.5 % of the initial porosity, and the zeta potential of EPS showed an obvious increase (-14.98 mV). The removal efficiencies of NH4+-N and chemical oxygen demand (COD) in tandem CW-PFC were respectively 31.8 ± 7.2 % and 86.1 ± 6.8 %, higher than those in control system (21.1 ± 11.0 % and 73.3 ± 5.6 %). Tandem CW-PFC could accelerate the degradation of EPS into small molecules (such as aromatic protein) by enhancing the electron transfer. Furthermore, microbiome structure analysis indicated that the enrichment of characteristic microorganisms (Anaerovorax) for degradation of protein-related pollutants, and electroactive bacteria (Geobacter and Trichococcus) promoted EPS degradation and electron transfer. The degradation of EPS might be attributed to the up-regulation of the abundances of carbohydrate and amino acid metabolism. This study provided a promising new strategy for synergic mitigation and prevention of bio-clogging in CW by coupling with MFC and photocatalysis.
Collapse
Affiliation(s)
- Wenyue Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Liu Dong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Tianyu Zhai
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Wenpeng Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Huazhen Wu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Yuqian Cui
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| |
Collapse
|
5
|
Feng H, Yang W, Zhang Y, Ding Y, Chen L, Kang Y, Huang H, Chen R. Electroactive microorganism-assisted remediation of groundwater contamination: Advances and challenges. BIORESOURCE TECHNOLOGY 2023; 377:128916. [PMID: 36940880 DOI: 10.1016/j.biortech.2023.128916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Groundwater contamination has become increasingly prominent, therefore, the development of efficient remediation technology is crucial for improving groundwater quality. Bioremediation is cost-effective and environmentally friendly, while coexisting pollutant stress can affect microbial processes, and the heterogeneous character of groundwater medium can induce bioavailability limitations and electron donor/acceptor imbalances. Electroactive microorganisms (EAMs) are advantageous in contaminated groundwater because of their unique bidirectional electron transfer mechanism, which allows them to use solid electrodes as electron donors/acceptors. However, the relatively low-conductivity groundwater environment is unfavorable for electron transfer, which becomes a bottleneck problem that limits the remediation efficiency of EAMs. Therefore, this study reviews the recent advances and challenges of EAMs applied in the groundwater environment with complex coexisting ions, heterogeneity, and low conductivity and proposes corresponding future directions.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Wanyue Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Ying Kang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Huan Huang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
6
|
Wu L, Zhu R, Han X, Chen Y, Long Z, Dong H, Chen X, Wu Y, Su Y, Zhang Z, Luo J. Sulfite altered permanganate effects on acetate-enriched short-chain fatty acids production during sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2023; 371:128589. [PMID: 36627086 DOI: 10.1016/j.biortech.2023.128589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Anaerobic fermentation is a promising method for waste activated sludge (WAS) treatment, but ineffective solubilization and hydrolysis limit its application. The current study examined the function of sodium sulfite (SDS) in potassium permanganate (PP)-conditioned WAS fermentation for short-chain fatty acids (SCFAs) biosynthesis. The presence of SDS in the PP system (PP/SDS) reduced the positive effects of PP on total SCFAs yield (2755 versus 3471 mg COD/L), while effectively increasing the proportion of acetate (from 41 to 81 %). Not only did SDS decrease the promoting effects of PP on WAS solubilization and hydrolysis efficiency by 5-42 %, it also shifted microbial metabolic pathways to favor acetate production. In addition, the amino acid metabolism with acetate as end product was enhanced. Moreover, PP/SDS inhibited methanogenesis, resulting in an accumulation of acetate in high quantities. Thus, the current study a provided insight and direction for effective WAS treatment with acetate-enriched SCFAs production.
Collapse
Affiliation(s)
- Lijuan Wu
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Rui Zhu
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Xiaoxia Han
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Yan Chen
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Zhen Long
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Hao Dong
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Xiaojiang Chen
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengyong Zhang
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210036, China.
| | - Jingyang Luo
- College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|