1
|
Wang QG, Guo BX, Ai JY, Shi WY, Zhang KJ, Wang P, Wang WH. Synchronous control of nitrogen and phosphorus release from sediments in shallow lakes under wind disturbance by modified zeolite and Ca/Al-based sludge combination. ENVIRONMENTAL RESEARCH 2025; 264:120448. [PMID: 39586516 DOI: 10.1016/j.envres.2024.120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
To inhibit eutrophication caused by endogenous pollutants release, the experiment explored the efficiency and mechanism of the synchronous control of nitrogen (N) and phosphorus (P) release from sediments in shallow lakes under wind disturbance by modified Ca/Al-based sludge (MS) and modified zeolite (MZ). High-temperature calcination and NaCl impregnation increased the pore volume of MS and Na+ content of MZ, and the adsorption capacity of MS for PO43--P and MZ for NH4+-N was as high as 42.01 and 20.28 mg g-1. The results of a 90-day incubation experiment showed that the addition of MS and MZ increased the abundance of Thauera, Nitrospira, Denitratisoma, and Clostridium, while decreasing the proportion of Proteus Hauser and Saccharimonadales, thereby reducing the active N and P contents in sediments through microbial transformation. At the same time, the efficient adsorption performance of the MS and MZ resulted in a significant decrease in pollutants in the interstitial water and sediments. In addition, sediment resuspension caused by wind disturbance increased the contact between sediments and remediation agents, resulting in the action depth of covering materials exceeding 100 mm. Compared to adding MS or MZ alone, the combination of the two (MSZG) could synchronously, efficiently, and stably inhibit N and P release. Under the coupling effects of physical interception, physicochemical adsorption, and biotransformation, the average TN, NH4+-N, TP, and PO43--P in the overlying water of the MSZG decreased by 72.13%, 88.92%, 69.28%, and 81.26%, respectively, compared to Control, which satisfying the Class III standard for surface water. Therefore, this study could provide reference for controlling endogenous release, improving eutrophication in shallow lakes under wind disturbance, and recycling residual sludge from sewage plants.
Collapse
Affiliation(s)
- Qiu-Gang Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Bing-Xu Guo
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Jun-Yu Ai
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Wei-Yi Shi
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Ke-Jia Zhang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Pu Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Wen-Huai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China.
| |
Collapse
|
2
|
Xie L, Yang B, Xu J, Dan SF, Ning Z, Zhou J, Kang Z, Lu D, Huang H. Effects of intensive oyster farming on nitrogen speciation in surface sediments from a typical subtropical mariculture bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170092. [PMID: 38246374 DOI: 10.1016/j.scitotenv.2024.170092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The spatial-temporal distributions of various nitrogen (N) species in surface sediments were examined in a typical subtropical mariculture bay (Maowei Sea) in the northern Beibu Gulf to assess the impact of intensive oyster culture activities on sedimentary N speciation. The results indicated that the mean contents of total nitrogen (TN), extractable (labile) nitrogen (LN) and residual nitrogen (RN) in the surface sediments were 33.3 ± 15.5 μmol g-1, 13.8 ± 1.3 μmol g-1 and 19.5 ± 15.0 μmol g-1, respectively, which lacked significant seasonal variability (P > 0.05). Four forms of LN, namely ion extractable form (IEF-N), weak acid extractable form (WAEF-N), strong alkali extractable form (SAEF-N) and strong oxidant extractable form (SOEF-N) were identified based on sequential extraction. SOEF-N was the dominant form of LN, accounting for 67.8 ± 2.5 % and 63.7 ± 5.9 % in summer and winter, respectively. Spatially, the contents of sedimentary TN, LN, RN, WAEF-N and SOEF-N in intensive mariculture areas (IMA) were significantly higher than those in non-intensive mariculture areas (NIMA) during summer (P < 0.05). Stable nitrogen isotope (δ15N) mixing model revealed that shellfish biodeposition was the predominant source of sedimentary TN in IMA with a contribution of 67.8 ± 23.0 %, approximately 5.4 times that of NIMA (12.6 ± 3.3 %). Significant positive correlations (P < 0.05) were observed between most forms of N species (WAEF-N, SOEF-N, LN and RN) and shellfish-biodeposited N in the surface sediments during summer, indicating that intensive oyster farming greatly enhanced sedimentary TN accumulation.
Collapse
Affiliation(s)
- Lei Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Bin Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China.
| | - Jie Xu
- Center for Regional Ocean, Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Taipa, Macau
| | - Solomon Felix Dan
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Zhiming Ning
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Jiaodi Zhou
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Zhenjun Kang
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Dongliang Lu
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Haifang Huang
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|