1
|
Ait Abdelkader SA, Benabdallah I, Amlieh M, El Fatimy A. Nanopore Creation in Graphene at the Nanoscale for Water Desalination. ACS OMEGA 2025; 10:9113-9119. [PMID: 40092808 PMCID: PMC11904654 DOI: 10.1021/acsomega.4c08852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 03/19/2025]
Abstract
Graphene-based 2D materials are renowned for their electrical, optical, magnetic, and mechanical properties. However, achieving stable, freestanding membranes for water desalination remains a major challenge. In response, we introduce a pioneering concept of a graphene device-based water filtration system. This system, featuring two graphene electrodes with nanopores, achieves the highest permeability value of 1208 L/h·m2·bar while maintaining a 100% salt rejection due to the electric field. We present a straightforward method for controlling membrane pore sizes at the nanoscale using argon-plasma magnetron sputtering, demonstrating that the nanopores in graphene are controllable and potentially size-tunable. Furthermore, we enhance the membrane by incorporating two types of substrates, SiO2 and SiC, making our concept more practical for industrial applications while preserving excellent desalination performances.
Collapse
Affiliation(s)
| | | | | | - Abdelouahad El Fatimy
- School of Applied and Engineering
Physics, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
2
|
Kumari S, Chowdhry J, Kumar M, Chandra Garg M. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects. ENVIRONMENTAL RESEARCH 2024; 260:119782. [PMID: 39142462 DOI: 10.1016/j.envres.2024.119782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Zeolites possess a microporous crystalline structure, a large surface area, and a uniform pore size. Natural or synthetic zeolites are commonly utilized for adsorbing organic and inorganic compounds from wastewater because of their unique physicochemical properties and cost-effectiveness. The present review work comprehensively revealed the application of zeolites in removing a diverse range of wastewater contaminates, such as dyes, heavy metal ions, and phenolic compounds, within the framework of contemporary research. The present review work offers a summary of the existing literature about the chemical composition of zeolites and their synthesis by different methods. Subsequently, the article provides a wide range of factors to examine the adsorption mechanisms of both inorganic and organic pollutants using natural zeolites and modified zeolites. This review explores the different mechanisms through which zeolites effectively eliminate pollutants from aquatic matrices. Additionally, this review explores that the Langmuir and pseudo-second-order models are the predominant models used in investigating isothermal and kinetic adsorption and also evaluates the research gap on zeolite through scientometric analysis. The prospective efficacy of zeolite materials in future wastewater treatment may be assessed by a comparative analysis of their capacity to adsorb toxic inorganic and organic contaminates from wastewater, with other adsorbents.
Collapse
Affiliation(s)
- Sheetal Kumari
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India
| | | | - Manish Kumar
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India.
| | - Manoj Chandra Garg
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India.
| |
Collapse
|
3
|
Nieto-Fabregat F, Lenza MP, Marseglia A, Di Carluccio C, Molinaro A, Silipo A, Marchetti R. Computational toolbox for the analysis of protein-glycan interactions. Beilstein J Org Chem 2024; 20:2084-2107. [PMID: 39189002 PMCID: PMC11346309 DOI: 10.3762/bjoc.20.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Protein-glycan interactions play pivotal roles in numerous biological processes, ranging from cellular recognition to immune response modulation. Understanding the intricate details of these interactions is crucial for deciphering the molecular mechanisms underlying various physiological and pathological conditions. Computational techniques have emerged as powerful tools that can help in drawing, building and visualising complex biomolecules and provide insights into their dynamic behaviour at atomic and molecular levels. This review provides an overview of the main computational tools useful for studying biomolecular systems, particularly glycans, both in free state and in complex with proteins, also with reference to the principles, methodologies, and applications of all-atom molecular dynamics simulations. Herein, we focused on the programs that are generally employed for preparing protein and glycan input files to execute molecular dynamics simulations and analyse the corresponding results. The presented computational toolbox represents a valuable resource for researchers studying protein-glycan interactions and incorporates advanced computational methods for building, visualising and predicting protein/glycan structures, modelling protein-ligand complexes, and analyse MD outcomes. Moreover, selected case studies have been reported to highlight the importance of computational tools in studying protein-glycan systems, revealing the capability of these tools to provide valuable insights into the binding kinetics, energetics, and structural determinants that govern specific molecular interactions.
Collapse
Affiliation(s)
- Ferran Nieto-Fabregat
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Maria Pia Lenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Angela Marseglia
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| |
Collapse
|
4
|
Mukhtar M, Khan HA, Ibisanmi TA, Faleti AI, Zaidi NUSS. Computational Exploration of Berberis lycium Royle: A Hidden Treasure Trove for Antiviral Development. Bioinform Biol Insights 2024; 18:11779322241264144. [PMID: 39072259 PMCID: PMC11283669 DOI: 10.1177/11779322241264144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
Viral infections and associated illnesses account for approximately 3.5 million global fatalities and public health problems. Medicinal plants, with their wide therapeutic range and minimal side effects, have gained limelight particularly in response to growing concerns about drug resistance and sluggish development of antiviral drugs. This study computationally assessed 11 chemical compounds from Berberis lycium along with two antiviral drugs to inhibit SARS CoV 2 (coronavirus disease 2019 [COVID-19]) RNA-dependent RNA polymerase (RdRP), influenza virus RdRP, and two crucial dengue virus (DENV) enzymes (NS2B/NS3 protease and NS5 polymerase). Berberine and oxyberberine passed all pharmacokinetics analysis filters including Lipinski rule, blood-brain barrier permeant, and cytochrome suppression and demonstrated drug-likeness, bioavailability, and a non-toxic profile. Docking of phytochemicals from B lycium returned promising results with selected viral proteins, ie, DENV NS2BNS3 (punjabine -10.9 kcal/mol), DENV NS5 (punjabine -10.4 kcal/mol), COVID-19 RdRP (oxyacanthine -9.5 kcal/mol), and influenza RdRP (punjabine -10.4 kcal/mol). The optimal pharmacokinetics of berberine exhibited good binding energies with NS2BNS3 (-8.0 kcal/mol), NS5 (-8.3 kcal/mol), COVID RdRP (-7.7 kcal/mol), and influenza RdRP (-8.3 kcal/mol), while molecular dynamics simulation of a 50-ns time scale by GROMACS software package provided insights into the flexibility and stability of the complexes. A hidden treasure trove for antiviral research, berberine, berbamine, berbamunine, oxyberberine, oxyacanthine, baluchistanamine, and sindamine has showed encouraging findings as possible lead compounds. Pharmacological analyses provide credence for the proposed study; nevertheless, as the antiviral mechanisms of action of these phytochemicals are not well understood, additional research and clinical trials are required to demonstrate both their efficacy and toxicity through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mamuna Mukhtar
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Haris Ahmed Khan
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Department of Biotechnology, University of Mianwali, Mianwali, Pakistan
| | - Tope Abraham Ibisanmi
- Department of Microbiology, School of Life Sciences, The Federal University of Technology Akure, Akure, Nigeria
| | - Ayodele Ifeoluwa Faleti
- Department of Chemistry, School of Physical Sciences, The Federal University of Technology Akure, Akure, Nigeria
| | - Najam us Sahar Sadaf Zaidi
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Haripur-KPK, Pakistan
| |
Collapse
|
5
|
Wang C, Zhu P, Huang Z, Zhang L, Xie S, Qi Z. Carboxymethylcellulose sodium-derived carbon aerogels for solar-driven water purification. CHEMOSPHERE 2024; 358:142109. [PMID: 38657692 DOI: 10.1016/j.chemosphere.2024.142109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/25/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Recycling polluted water via different techniques has become one of the most feasible ways to solve the freshwater crisis. We describe a novel method to prepare reusable and efficient photothermal energy conversion materials for water purification. Using crosslinked xerogels as precursor, the porous and interconnected carboxymethylcellulose sodium-derived carbon aerogels (abbreviated as CCAs) with good hydrophilic performance and strong light absorption capability are firstly fabricated through pyrolysis. Photothermal measurement results show that CCA15 exhibit excellent solar steam generation rate of 2.31 kg m-2 h-1 with high light-to-vapor conversion efficiency of 95.9% under 1 sun illumination. In addition, the feasible application of CCA15 for efficient water purification under 1 sun irradiation using a homemade water treatment device has been demonstrated successfully. The as-prepared CCAs shown in here can be a continuable solution to mitigate the global freshwater crisis.
Collapse
Affiliation(s)
- Chaoming Wang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Peng Zhu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zheng Huang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Lei Zhang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Shuaiao Xie
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhiyong Qi
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, Sichuan, China
| |
Collapse
|
6
|
Liu QR, Lin XL, Lu ZM, Chai LJ, Wang ST, Shi JS, Zhang SY, Shen CH, Zhang XJ, Xu ZH. Influence on the volatilization of ethyl esters: Nonnegligible role of long-chain fatty acids on Baijiu flavor via intermolecular interaction. Food Chem 2024; 436:137731. [PMID: 37862997 DOI: 10.1016/j.foodchem.2023.137731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Long-chain fatty acids (LCFAs) are commonly presented in Baijiu, but their influence on flavor is ambiguous. The interaction between LCFAs and volatiles was systematically investigated in terms of chemometrics, sensory, and chemical-physical perceptions. The static-headspace-gas-chromatography-mass-spectrometry results demonstrated LCFAs suppressed the volatilizations of most volatiles. According to Phase-ratio-variation analysis, partition coefficients of ethyl acetate (EA) and ethyl hexanoate (EH) decreased 4%-31% and 27%-74%, while those of ethyl butyrate (EB) increased. Calculated by molecular dynamic simulation, the attractive intermolecular forces related to EA/EH increased with oleic acid (OA) addition, while those related to EB decreased. Sensory evaluation confirmed the olfactory threshold of EA and EH increased by 2.4 and 2.7 times respectively, but the threshold of EB decreased from 0.36 to 0.05 mg/L in the presence of OA. Overall, LCFAs altered the intermolecular interaction forces related to esters and ethanol, subsequently affecting the volatile profile and modifying Baijiu flavor's sensory perception.
Collapse
Affiliation(s)
- Qing-Ru Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Xian-Li Lin
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Zhen-Ming Lu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Li-Juan Chai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, P.R. China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Jin-Song Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, P.R. China
| | - Su-Yi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Xiao-Juan Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China.
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
7
|
Im SJ, Viet ND, Lee BT, Jang A. An efficient data-driven desalination approach for the element-scale forward osmosis (FO)-reverse osmosis (RO) hybrid systems. ENVIRONMENTAL RESEARCH 2023; 237:116786. [PMID: 37517485 DOI: 10.1016/j.envres.2023.116786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Freshwater shortages are a consequence of the rapid increase in population, and desalination of saltwater has gained popularity as an alternative water treatment method in recent years. To date, the forward osmosis-reverse osmosis (FO-RO) hybrid technology has been proposed as a low-energy and environmentally friendly next-generation seawater desalination process. Scaling up the FO-RO hybrid system significantly affects the success of a commercial-scale process. However, neither the ideal structure nor the membrane components for plate-and-frame FO (PFFO) and spiral-wound FO (SWFO) are known. This study aims to explore and optimize the performance of SWFO-RO and PFFO-RO hybrid element-scale systems in the desalination of seawater. The results showed that both hybrid systems could yield high water recovery under optimal operating conditions. The prediction of the system performance (water flux and reverse salt flux) by artificial intelligence was considerably better (R > 0.99, root mean square error <5%) than that of conventional mass balance models. A Markov-based decision tree successfully classified the water flux level in hybrid systems. An optimal set of operational conditions for each membrane system was proposed. For example, in RO, a combination of the feed solution (FS) flow rate (≥17.5 L/min), FS concentration (<17,500 ppm), and operation pressure (<35 bar) would result in high water permeability (>40 LMH). In addition, five SWFO elements and four PFFO elements should be the optimal numbers of FO membranes in the hybrid FO-RO system for effective seawater desalination, especially for long-term operation.
Collapse
Affiliation(s)
- Sung-Ju Im
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Nguyen Duc Viet
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, 21985, Republic of Korea
| | - Byung-Tae Lee
- Central Research Facilities, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 6100, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|