1
|
Prakasham K, Gurrani S, Wu CF, Wu MT, Hsieh TJ, Peng CY, Huang PC, Krishnan A, Tsai PC, Lin YC, Tsai B, Lin YC, Ponnusamy VK. Rapid identification and monitoring of cooking oil fume-based toxic volatile organic aldehydes in lung tissue for predicting exposure level and cancer risks. CHEMOSPHERE 2023; 339:139704. [PMID: 37536542 DOI: 10.1016/j.chemosphere.2023.139704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/08/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Cooking oil fumes (COFs) comprised of a mixture of cancer-causing volatile organic aldehydes (VOAs), particularly trans, trans-2,4-decadienal (t,t-DDE), 4-hydroxy-hexenal (4-HHE), and 4-hydroxy-nonenal (4-HNE). Monitoring toxic VOAs levels in people exposed to different cooking conditions is vital to predicting the cancer risk. For this purpose, we developed a fast tissue extraction (FaTEx) technique combined with UHPLC-MS/MS to monitor three toxic VOAs in mice lung tissue samples. FaTEx pre-treatment protocol was developed by combining two syringes for extraction and clean-up process. The various procedural steps affecting the FaTEx sample pre-treatment process were optimized to enhance the target VOAs' extraction efficiency from the sample matrix. Under the optimal experimental conditions, results exhibit good correlation coefficient values > 0.99, detection limits were between 0.5-3 ng/g, quantification limits were between 1-10 ng/g, and the matrix effect was <18.1%. Furthermore, the extraction recovery values of the spiked tissue exhibited between 88.9-109.6% with <8.6% of RSD. Cooking oil fume (containing t,t-DDE) treated mice at various time durations were sacrificed to validate the developed technique, and it was found that t,t-DDE concentrations were from 14.8 to 33.8 μg/g. The obtained results were found to be a fast, reliable, and semi-automated sample pre-treatment technique with good extraction efficiency, trace level detection limit, and less matrix effect. Therefore, this method can be applied as a potential analytical method to determine the VOAs in humans exposed to long-term cooking oil fumes.
Collapse
Affiliation(s)
- Karthikeyan Prakasham
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Swapnil Gurrani
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Chia-Fang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; International Master Program of Translational Medicine, College of Engineering and Science, National United University, Miaoli, Taiwan.
| | - Ming-Tsang Wu
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tusty-Jiuan Hsieh
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Chiung-Yu Peng
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Po-Chin Huang
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County, 35053, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Anbarasu Krishnan
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Pei-Chien Tsai
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Yu-Chia Lin
- Research and Development Division, Great Engineering Technology (GETECH) Corporation, No.392, Yucheng Rd., Zuoying District., Kaohsiung City, 813, Taiwan
| | - Bongee Tsai
- Research and Development Division, Great Engineering Technology (GETECH) Corporation, No.392, Yucheng Rd., Zuoying District., Kaohsiung City, 813, Taiwan
| | - Yuan-Chung Lin
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan
| | - Vinoth Kumar Ponnusamy
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City, 807, Taiwan.
| |
Collapse
|
2
|
Gurrani S, Prakasham K, Huang PC, Wu MT, Wu CF, Lin YC, Tsai B, Krishnan A, Tsai PC, Ponnusamy VK. Simultaneous biomonitoring of volatile organic compounds' metabolites in human urine samples using a novel in-syringe based fast urinary metabolites extraction (FaUMEx) technique coupled with UHPLC-MS/MS analysis. CHEMOSPHERE 2023; 329:138667. [PMID: 37059207 DOI: 10.1016/j.chemosphere.2023.138667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Assessing the impact of human exposure to environmental toxicants is often crucial to biomonitoring the exposed dose. In this work, we report a novel fast urinary metabolites extraction (FaUMEx) technique coupled with UHPLC-MS/MS analysis for the highly sensitive and simultaneous biomonitoring of the five major urinary metabolites (thiodiglycolic acid, s-phenylmercapturic acid, t,t-muconic acid, mandelic acid, and phenyl glyoxylic acid) of common volatile organic compounds' (VOCs) exposure (vinyl chloride, benzene, styrene, and ethylbenzene) in human. FaUMEx technique comprises of two-steps, liquid-liquid microextraction was performed first in an extraction syringe using 1 mL of methanol (pH 3) as an extraction solvent and then, the extractant was passed through a clean-up syringe (pre-packed-with various sorbents including 500 mg anhydrous MgSO4, 50 mg C18, and 50 mg SiO2) to obtain the high order of matrice clean-up and preconcentration efficiency. The developed method displayed excellent linearity, and the correlation coefficients were >0.998 for all the target metabolites with detection and quantification limits of 0.02-0.24 ng mL-1 and 0.05-0.72 ng mL-1, respectively. Furthermore, the matrix effects were < ±5%, and inter and intra-day precision were <9%. Moreover, the presented method was applied and validated to real sample analysis for biomonitoring of VOC's exposure levels. The results showed that the developed FaUMEx-UHPLC-MS/MS method is fast, simple, low-cost, low-solvent consumption, high sensitivity with good accuracy and precision for five targeted urinary VOCs' metabolites. Therefore, the presented dual-syringe mode FaUMEx strategy with UHPLC-MS/MS technique can be applied to biomonitoring of various urinary metabolites to assess human exposure to environmental toxicants.
Collapse
Affiliation(s)
- Swapnil Gurrani
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Karthikeyan Prakasham
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County, 35053, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Ming-Tsang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chia-Fang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; International Master Program of Translational Medicine, College of Engineering and Science, National United University, Miaoli, Taiwan
| | - Yu-Chia Lin
- Research and Development Division, Great Engineering Technology (GETECH) Corporation, No.392, Yucheng Rd., Zuoying District., Kaohsiung City, 813, Taiwan
| | - Bongee Tsai
- Research and Development Division, Great Engineering Technology (GETECH) Corporation, No.392, Yucheng Rd., Zuoying District., Kaohsiung City, 813, Taiwan
| | - Anbarasu Krishnan
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Pei-Chien Tsai
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Vinoth Kumar Ponnusamy
- PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
| |
Collapse
|