1
|
Pinto-Vidal FA, Krauss M, Novák J, Melymuk L, Brack W, Hilscherová K. Identification of compounds contributing to glucocorticoid activity in indoor dust supported by orthogonal fractionation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125579. [PMID: 39725205 DOI: 10.1016/j.envpol.2024.125579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Indoor dust contains various endocrine-disrupting contaminants, yet the effect drivers of observed glucocorticoid activity are completely unknown. This study conducted an effect-directed analysis using orthogonal fractionation to identify effect drivers of glucocorticoid activity in indoor dust. After the detection of bioactivity using a human cell line stably transfected with a reporter gene, the sample underwent parallel HPLC fractionations with octadecyl, pentafluorophenyl, and aminopropyl columns to obtain orthogonal fractions. The bioassays were utilized to screen the fractions and guide efforts towards prioritization of the bioactive chemicals using targeted and non-targeted analysis with LC-HRMS. The glucocorticoid activity of the identified potential candidates was confirmed by their testing in the same bioassay. To assess their contribution to the detected mixture effects, we calculated their relative potencies. This approach led to the identification of two pharmaceuticals, clobetasol propionate and mometasone furoate, at concentrations ranging from ng to μg per gram of dust, which together accounted for up to 77% of the observed glucocorticoid activity. This is the first report documenting the effect drivers of glucocorticoid receptor agonism in indoor dust; however, together with previous studies of various environmental samples, it documents that in cases when glucocorticoid receptor-agonistic activity is detected, drugs should be considered as likely relevant contaminants. The discovery of potent drugs in household dust highlights concerns for individuals exposed within domestic environments and emphasizes the need to consider pharmaceuticals as relevant contributors to indoor contamination.
Collapse
Affiliation(s)
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Department of Exposure Science, 04318, Leipzig, Germany
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Exposure Science, 04318, Leipzig, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Max-von-Laue-Strasse, 13 60438, Frankfurt am Main, Germany
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic.
| |
Collapse
|
2
|
Marcinekova P, Melymuk L, Bohlin-Nizzetto P, Martinelli E, Jílková SR, Martiník J, Šenk P, Kukučka P, Audy O, Kohoutek J, Ghebremeskel M, Håland A, Borgen AR, Eikenes H, Hanssen L, Harju M, Cebula Z, Rostkowski P. Development of a supramolecular solvent-based extraction method for application to quantitative analyses of a wide range of organic contaminants in indoor dust. Anal Bioanal Chem 2024; 416:4973-4985. [PMID: 38995406 PMCID: PMC11330406 DOI: 10.1007/s00216-024-05433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
This study investigates the efficacy of supramolecular solvent (SUPRAS) in extracting a diverse spectrum of organic contaminants from indoor dust. Initially, seven distinct SUPRAS were assessed across nine categories of contaminants to identify the most effective one. A SUPRAS comprising Milli-Q water, tetrahydrofuran, and hexanol in a 70:20:10 ratio, respectively, demonstrated the best extraction performance and was employed for testing a wider array of organic contaminants. Furthermore, we applied the selected SUPRAS for the extraction of organic compounds from the NIST Standard Reference Material (SRM) 2585. In parallel, we performed the extraction of NIST SRM 2585 with conventional extraction methods using hexane:acetone (1:1) for non-polar contaminants and methanol (100%) extraction for polar contaminants. Analysis from two independent laboratories (in Norway and the Czech Republic) demonstrated the viability of SUPRAS for the simultaneous extraction of twelve groups of organic contaminants with a broad range of physico-chemical properties including plastic additives, pesticides, and combustion by-products. However, caution is advised when employing SUPRAS for highly polar contaminants like current-use pesticides or volatile substances like naphthalene.
Collapse
Affiliation(s)
- Paula Marcinekova
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia.
| | | | | | | | - Jakub Martiník
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Petr Kukučka
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Ondřej Audy
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| | | | | | | | - Heidi Eikenes
- NILU, Instituttveien 18, Kjeller, 2007, Lillestrøm, Norway
| | - Linda Hanssen
- Fram Center, NILU, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway
| | - Mikael Harju
- Fram Center, NILU, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway
| | - Zofia Cebula
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | | |
Collapse
|
3
|
Pinto-Vidal FA, Novák J, Jílková SR, Rusina T, Vrana B, Melymuk L, Hilscherová K. Endocrine disrupting potential of total and bioaccessible extracts of dust from seven different types of indoor environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133778. [PMID: 38460255 DOI: 10.1016/j.jhazmat.2024.133778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/11/2024]
Abstract
Information on the indoor environment as a source of exposure with potential adverse health effects is mostly limited to a few pollutant groups and indoor types. This study provides a comprehensive toxicological profile of chemical mixtures associated with dust from various types of indoor environments, namely cars, houses, prefabricated apartments, kindergartens, offices, public spaces, and schools. Organic extracts of two different polarities and bioaccessible extracts mimicking the gastrointestinal conditions were prepared from two different particle size fractions of dust. These extracts were tested on a battery of human cell-based bioassays to assess endocrine disrupting potentials. Furthermore, 155 chemicals from different pollutant groups were measured and their relevance for the bioactivity was determined using concentration addition modelling. The exhaustive and bioaccessible extracts of dust from the different microenvironments interfered with aryl hydrocarbon receptor, estrogen, androgen, glucocorticoid, and thyroid hormone (TH) receptor signalling, and with TH transport. Noteably, bioaccessible extracts from offices and public spaces showed higher estrogenic effects than the organic solvent extracts. 114 of the 155 targeted chemicals were detectable, but the observed bioactivity could be only marginally explained by the detected chemicals. Diverse toxicity patterns across different microenvironments that people inhabit throughout their lifetime indicate potential health and developmental risks, especially for children. Limited data on the endocrine disrupting potency of relevant chemical classes, especially those deployed as replacements for legacy contaminants, requires further study.
Collapse
Affiliation(s)
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Simona Rozárka Jílková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Tatsiana Rusina
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic.
| |
Collapse
|