1
|
Lachowicz JI, Gać P. Short-Term and Long-Term Effects of Inhaled Ultrafine Particles on Blood Markers of Cardiovascular Diseases: A Systematic Review and Meta-Analysis. J Clin Med 2025; 14:2846. [PMID: 40283676 PMCID: PMC12028172 DOI: 10.3390/jcm14082846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Air pollution is the highest environmental risk factor of mortality and morbidity worldwide, leading to over 4 million deaths each year. Among different air pollutants, ultrafine particles (UFPs) constitute the highest risk factor of cardiovascular diseases (CVDs). Epidemiological studies have associated UFPs with the short- and long-term imbalance of numerous blood markers. Our objective was to systematically review the short-term and long-term impact of UFP exposure on blood markers of CVDs. Methods: We prepared the systematic review of CVD blood markers and meta-analyses of the short- and long-term effects of UFP exposure on high-sensitivity C-reactive protein (hsCRP) concentration. The eligibility criteria were established with the use of the Provider, Enrollment, Chain, and Ownership System (PECOS) model, and the literature search was conducted in Web of Science, PubMed, and Scopus databases from 1 January 2013 to 9 January 2025. The risk of bias (RoB) was prepared according to a World Health Organization (WHO) template. Results: The results showed an increase in hsCRP as a result of both short-term and long-term UFPs. Moreover, IL-6 and IL-1β together with other inflammatory markers increased after short-term UFP exposure. In addition, different nucleic acids, among which were miR-24-3p and let-7d-5p, were differentially expressed (DE) as a result of short-term UFP exposure. Chronic exposure to UFPs could lead to a persistent increase in hsCRP and other blood markers of CVDs. Conclusions: Our findings underline that UFPs may lead to the development and/or worsening of cardiovascular outcomes in fragile populations living in air-polluted areas.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland;
| | | |
Collapse
|
2
|
Lachowicz JI, Gać P. Short- and Long-Term Effects of Inhaled Ultrafine Particles on Blood Pressure: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:6802. [PMID: 39597946 PMCID: PMC11594296 DOI: 10.3390/jcm13226802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Air pollution contributes to up to 60% of premature mortality worldwide by worsening cardiovascular conditions. Ultrafine particles (UFPs) may negatively affect cardiovascular outcomes, and epidemiological studies have linked them to short- and long-term blood pressure (BP) imbalance. Methods: We conducted a systematic review and meta-analysis of the short- and long-term effects of UFP exposure on systolic (SBP) and diastolic (DBP) blood pressure. Eligibility criteria were established using the Population, Exposure, Comparator, Outcome, and Study Design (PECOS) model, and literature searches were conducted in Web of Science, PubMed, Embase, and Scopus for studies published between 1 January 2013 and 9 October 2024. Risk of Bias (RoB) was assessed following World Health Organization (WHO) instructions. Separate meta-analyses were performed for the short- and long-term effects of UFP exposure on SBP and DBP. Additionally, we analyzed SBP and DBP imbalances across different timespans following short-term exposure. Results: The results showed an increase in BP during short-term UFP exposure, which returned to baseline values after a few hours. Changes in SBP were greater than in DBP following both short- and long-term exposure. Prolonged exposure to UFPs is associated with increased SBP and concurrently low DBP values. Chronic exposure to UFPs may lead to a persistent increase in SBP, even without a concurrent increase in DBP. Conclusions: The findings presented here highlight that UFPs may contribute to worsening cardiovascular outcomes in vulnerable populations living in air-polluted areas.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Population Health, Division of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland;
| | | |
Collapse
|
3
|
Zhang Y, Zheng P, Shi J, Ma Y, Chen Z, Wang T, Jia G. The modification effect of fasting blood glucose level on the associations between short-term ambient air pollution and blood lipids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2998-3010. [PMID: 37975287 DOI: 10.1080/09603123.2023.2283048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The association between short-term ambient air pollution (AAP) exposure and blood lipids is inconsistent across populations. This study aimed to investigate the modifying effects of fasting blood glucose (FBG) levels on the associations between short-term AAP exposure and blood lipids in 110,637 male participants from Beijing, China. The results showed that FBG modified the association between short-term AAP exposure and blood lipids, especially low-density lipoprotein cholesterol (LDL-C). In the hyperglycemia group, a 10-μg/m3 increase in particles with diameters ≤ 2.5 μm (PM2.5), particles with diameters ≤ 10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), or a 1-mg/m3 increase in carbon monoxide (CO) was associated with a 0.454%, 0.305%, 1.507%, 0.872%, or 3.961% increase in LDL-C, respectively. In the nonhyperglycemic group, short-term increases in air pollutants were even associated with small decreases in LDL-C. The findings demonstrate that lipids in hyperglycemic individuals are more vulnerable to short-term AAP exposure than those in normal populations.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Tiancheng Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
4
|
Lin C, Lane KJ, Chomitz VR, Griffiths JK, Brugge D. The Exposure Peaks of Traffic-Related Ultrafine Particles Associated with Inflammatory Biomarkers and Blood Lipid Profiles. TOXICS 2024; 12:147. [PMID: 38393242 PMCID: PMC10893127 DOI: 10.3390/toxics12020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
In this article, we explored the effects of ultrafine particle (UFP) peak exposure on inflammatory biomarkers and blood lipids using two novel metrics-the intensity of peaks and the frequency of peaks. We used data previously collected by the Community Assessment of Freeway Exposure and Health project from participants in the Greater Boston Area. The UFP exposure data were time-activity-adjusted hourly average concentration, estimated using land use regression models based on mobile-monitored ambient concentrations. The outcome data included C-reactive protein, interleukin-6 (IL-6), tumor necrosis factor-alpha receptor 2 (TNF-RII), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides and total cholesterol. For each health indicator, multivariate regression models were used to assess their associations with UFP peaks (N = 364-411). After adjusting for age, sex, body mass index, smoking status and education level, an increase in UFP peak exposure was significantly (p < 0.05) associated with an increase in TNF-RII and a decrease in HDL and triglycerides. Increases in UFP peaks were also significantly associated with increased IL-6 and decreased total cholesterol, while the same associations were not significant when annual average exposure was used. Our work suggests that analysis using peak exposure metrics could reveal more details about the effect of environmental exposures than the annual average metric.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.L.); (V.R.C.); (J.K.G.)
| | - Kevin J. Lane
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA;
| | - Virginia R. Chomitz
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.L.); (V.R.C.); (J.K.G.)
| | - Jeffrey K. Griffiths
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.L.); (V.R.C.); (J.K.G.)
- Department of Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| | - Doug Brugge
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
5
|
Xing W, Liang M, Gu W, Wang Z, Fan D, Zhang B, Sun S, Wang L, Shi L. Exposure to Perfluoroalkyl Substances and Hyperlipidemia Among Adults: Data From NHANES 2017-2018. J Occup Environ Med 2024; 66:105-110. [PMID: 37853679 DOI: 10.1097/jom.0000000000003000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND The present study aims to explore the relationship between perfluoroalkyl substances (PFAS) exposure and hyperlipidemia using data from the National Health and Nutrition Examination Survey. METHODS A total of 1600 subjects were included in the analysis, and nine kinds of PFAS were measured. Multivariate logistic regression analysis was performed to explore the association between serum PFAS and hyperlipidemia. RESULTS Compared with the lowest quartile of perfluoromethylheptane sulfonic acid isomers (Sm-PFOS), the percentage change for hyperlipidemia was 57% and 41% in the third and highest quartile of PFOS. The positive association between Sm-PFOS and hyperlipidemia remained significant in population younger than 60 years, and the odds ratio for hyperlipidemia in fourth quartile of Sm-PFOS was 1.81. CONCLUSIONS These findings indicated that serum Sm-PFOS was independently associated with a higher risk for hyperlipidemia. The epidemiological study warrants further study to elucidate the causal relationship between them.
Collapse
Affiliation(s)
- Weilong Xing
- From the Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang Y, Shi J, Ma Y, Yu N, Zheng P, Chen Z, Wang T, Jia G. Association between Air Pollution and Lipid Profiles. TOXICS 2023; 11:894. [PMID: 37999546 PMCID: PMC10675150 DOI: 10.3390/toxics11110894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
Dyslipidemia is a critical factor in the development of atherosclerosis and consequent cardiovascular disease. Numerous pieces of evidence demonstrate the association between air pollution and abnormal blood lipids. Although the results of epidemiological studies on the link between air pollution and blood lipids are unsettled due to different research methods and conditions, most of them corroborate the harmful effects of air pollution on blood lipids. Mechanism studies have revealed that air pollution may affect blood lipids via oxidative stress, inflammation, insulin resistance, mitochondrial dysfunction, and hypothalamic hormone and epigenetic changes. Moreover, there is a risk of metabolic diseases associated with air pollution, including fatty liver disease, diabetes mellitus, and obesity, which are often accompanied by dyslipidemia. Therefore, it is biologically plausible that air pollution affects blood lipids. The overall evidence supports that air pollution has a deleterious effect on blood lipid health. However, further research into susceptibility, indoor air pollution, and gaseous pollutants is required, and the issue of assessing the effects of mixtures of air pollutants remains an obstacle for the future.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Nairui Yu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Tiancheng Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China;
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| |
Collapse
|
7
|
Zhao Y, Shen G, Lin X, Zhang L, Fan F, Zhang Y, Li J. Identifying the Relationship between PM 2.5 and Hyperlipidemia Using Mendelian Randomization, RNA-seq Data and Model Mice Subjected to Air Pollution. TOXICS 2023; 11:823. [PMID: 37888673 PMCID: PMC10611378 DOI: 10.3390/toxics11100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Air pollution is an important public health problem that endangers human health. However, the casual association and pathogenesis between particles < 2.5 μm (PM2.5) and hyperlipidemia remains incompletely unknown. Mendelian randomization (MR) and transcriptomic data analysis were performed, and an air pollution model using mice was constructed to investigate the association between PM2.5 and hyperlipidemia. MR analysis demonstrated that PM2.5 is associated with hyperlipidemia and the triglyceride (TG) level in the European population (IVW method of hyperlipidemia: OR: 1.0063, 95%CI: 1.0010-1.0118, p = 0.0210; IVW method of TG level: OR: 1.1004, 95%CI: 1.0067-1.2028, p = 0.0350). Mest, Adipoq, Ccl2, and Pcsk9 emerged in the differentially expressed genes of the liver and plasma of PM2.5 model mice, which might mediate atherosclerosis accelerated by PM2.5. The studied animal model shows that the Paigen Diet (PD)-fed male LDLR-/- mice had higher total cholesterol (TC), TG, and CM/VLDL cholesterol levels than the control group did after 10 times 5 mg/kg PM2.5 intranasal instillation once every three days. Our study revealed that PM2.5 had causality with hyperlipidemia, and PM2.5 might affect liver secretion, which could further regulate atherosclerosis. The lipid profile of PD-fed Familial Hypercholesterolemia (FH) model mice is more likely to be jeopardized by PM2.5 exposure.
Collapse
Affiliation(s)
- Yixue Zhao
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
| | - Geng Shen
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
| | - Xipeng Lin
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
| | - Long Zhang
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
| | - Fangfang Fan
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
| | - Yan Zhang
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
| | - Jianping Li
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; (Y.Z.); (G.S.); (X.L.); (L.Z.); (F.F.); (Y.Z.)
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| |
Collapse
|