1
|
Adetunji AG, Obeng-Gyasi E. Investigating the Interplay of Toxic Metals and Essential Elements in Cardiovascular Disease. J Xenobiot 2025; 15:68. [PMID: 40407532 PMCID: PMC12101410 DOI: 10.3390/jox15030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/26/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality globally, accounting for approximately one-third of all deaths. Exposure to toxic metals poses significant risks to cardiovascular health, contributing to the development of CVDs. Essential elements are crucial for maintaining cardiovascular function; however, imbalances or deficiencies in these elements can exacerbate the risk and progression of CVDs. Understanding the interactions between toxic metals and essential elements is crucial for elucidating their impact on cardiovascular health. This study aims to examine the individual and combined effects of toxic metals-lead (Pb), cadmium (Cd), and mercury (Hg)-along with essential elements-manganese (Mn), iron (Fe), and selenium (Se)-on CVDs. We explored the effects of toxic metals and essential elements using data from the National Health and Nutrition Examination Survey (NHANES, 2017-2018). We conducted descriptive analyses and applied advanced statistical methods, including Bayesian kernel machine regression (BKMR), weighted quantile sum regression (WQSR), and quantile g-computation, to assess the associations between these toxic metals and essential elements on key cardiovascular-related biomarkers. The results revealed distinct patterns of influence across the toxic metals and essential elements. Spearman correlation showed a stronger association among toxic metals than essential elements. Bayesian kernel machine regression (BKMR) and posterior inclusion probability (PIP) analysis identified lead, mercury, iron, and selenium as key contributors to CVD risk, with lead strongly linked to high-density lipoprotein (HDL), diastolic blood pressure (DBP), and systolic blood pressure (SBP). Selenium was linked to low-density lipoprotein (LDL) cholesterol and non-high-density lipoprotein (non-HDL) cholesterol. Univariate and bivariate analyses confirmed lead and mercury's strong associations with triglycerides and blood pressure, while lead, selenium, and iron were linked to different cholesterol outcomes. Single-variable analysis revealed an interaction between individual exposures and combined exposures. The overall exposure effect assessing the impact of all exposures combined on CVD markers revealed a steady positive association with triglycerides, total cholesterol, LDL, non-HDL cholesterol, and DBP, with HDL and SBP increasing from the 65th percentile. Quantile g-computation and WQSR confirmed lead's consistent positive association across all outcomes, with variations among other toxic metals and essential elements. In conclusion, our study suggests that toxic metals and essential elements are important factors in CVD outcomes, with different metals and elements associated with variations in specific biomarkers.
Collapse
Affiliation(s)
- Aderonke Gbemi Adetunji
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
2
|
Hu XF, Loan A, Chan HM. Re-thinking the link between exposure to mercury and blood pressure. Arch Toxicol 2025; 99:481-512. [PMID: 39804370 PMCID: PMC11775068 DOI: 10.1007/s00204-024-03919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025]
Abstract
Hypertension or high blood pressure (BP) is a prevalent and manageable chronic condition which is a significant contributor to the total global disease burden. Environmental chemicals, including mercury (Hg), may contribute to hypertension onset and development. Hg is a global health concern, listed by the World Health Organization (WHO) as a top ten chemical of public health concern. Most people are exposed to some level of Hg, with vulnerable groups, including Indigenous peoples and small-scale gold miners, at a higher risk for exposure. We published a systematic review and meta-analysis in 2018 showing a dose-response relationship between Hg exposure and hypertension. This critical review summarizes the biological effects of Hg (both organic and inorganic form) on the underlying mechanisms that may facilitate the onset and development of hypertension and related health outcomes and updates the association between Hg exposure (total Hg concentrations in hair) and BP outcomes. We also evaluated the weight of evidence using the Bradford Hill criteria. There is a strong dose-response relationship between Hg (both organic and inorganic) exposure and BP in animal studies and convincing evidence that Hg contributes to hypertension by causing structural and functional changes, vascular reactivity, vasoconstriction, atherosclerosis, dyslipidemia, and thrombosis. The underlying mechanisms are vast and include impairments in antioxidant defense mechanisms, increased ROS production, endothelial dysfunction, and alteration of the renin-angiotensin system. We found additional 16 recent epidemiological studies that have reported the relationship between Hg exposure and hypertension in the last 5 years. Strong evidence from epidemiological studies shows a positive association between Hg exposure and the risk of hypertension and elevated BP. The association is mixed at lower exposure levels but suggests that Hg can affect BP even at low doses when co-exposed with other metals. Further research is needed to develop robust conversion factors among different biomarkers and standardized measures of Hg exposure. Regulatory agencies should consider adopting a 2 µg/g hair Hg level as a cut-off for public health regulation, especially for adults older than child-bearing age.
Collapse
Affiliation(s)
- Xue Feng Hu
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Allison Loan
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Hing Man Chan
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
3
|
Almashhadany DA, Rashid RF, Altaif KI, Mohammed SH, Mohammed HI, Al-Bader SM. Heavy metal(loid) bioaccumulation in fish and its implications for human health. Ital J Food Saf 2024; 14:12782. [PMID: 39960044 PMCID: PMC11874910 DOI: 10.4081/ijfs.2024.12782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/25/2024] [Indexed: 02/20/2025] Open
Abstract
Heavy metal(loid)s (HM) pollution in aquatic environments is a serious issue due to the toxicity, persistence, bioaccumulation, and biomagnification of these pollutants. The main sources of HM contamination are industrial activities, mining, agricultural practices, and combustion of fossil fuels. Fish can accumulate HMs through a process called bioaccumulation. As larger predatory fish consume smaller fish, these HMs enter the main food chains and can become increasingly concentrated in their tissues and finally reach humans. Here, we provided a general and concise conclusion from current research findings on the toxicological effects on different body systems. Exposure to HMs can lead to a range of adverse health effects, including neurological damage, developmental disorders, kidney damage, cardiovascular problems, and cancers. Their long-term accumulation can result in chronic toxicity even at low levels of exposure. HMs exert cellular cytotoxicity by disrupting essential cellular processes and structures. They can interfere with enzyme function, disrupt cell membrane integrity, induce oxidative stress, and cause DNA damage, ultimately leading to cell death or dysfunction. Prevention and control of HMs involve implementing measures to reduce their release into the environment through regulations on industrial processes, waste management, and pollution control technologies. Additionally, monitoring and remediation efforts are crucial for identifying contaminated sites and implementing strategies such as soil and water remediation to reduce human exposure and mitigate the impact on ecosystems. To conclude, HM accumulation in fish poses serious risks to public health and the environment, necessitating urgent interdisciplinary efforts to mitigate their harmful effects and promote sustainable practices that reduce HM flow into biological systems.
Collapse
Affiliation(s)
| | - Rzgar Farooq Rashid
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil.
| | | | | | - Hero Ismael Mohammed
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region.
| | - Salah Mahdi Al-Bader
- Department of Community Health, College of Health Technology, Cihan University-Erbil, Kurdistan Region.
| |
Collapse
|
4
|
Zhao H, Peng J. The Association Between Blood Mercury and Lipid Biomarkers in US Hypertensive Adults. Biol Trace Elem Res 2024; 202:5373-5383. [PMID: 38368312 DOI: 10.1007/s12011-024-04103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Mercury (Hg) is detrimental to human health, but its impact on lipid biomarkers remains a subject of controversy. This study sought to delineate a clear link between blood Hg and lipid biomarkers correlated with cardiovascular disease (CVD), including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG), in hypertensive adults in the USA. METHODS This cross-sectional research gathered data from a total of 4415 participants sourced from the National Health and Nutrition Examination Survey (NHANES). The Holm-Bonferroni stepdown procedure was utilized to control the type I error rate in multiple comparisons. We employed multivariable linear regression models to assess the correlation between blood Hg and lipid biomarkers. Subsequently, subgroup analyses were conducted, categorized by both gender and race. Additionally, we used smooth curve fittings and generalized additive models to confirm the presence of non-linear relationships. When non-linearity was detected, we applied a recursive algorithm to calculate the inflection points. Finally, we established a weighted two-piecewise linear regression model to illustrate the associations on either side of the inflection point. RESULTS In our multivariable linear regression models, clear associations emerged. Specifically, positive correlations were observed between blood mercury and TC (β = 0.025; 95% CI 0.009 to 0.041; corrected P = 0.011), LDL-C (β = 0.022; 95% CI 0.007 to 0.036; corrected P = 0.012), and HDL-C (β = 0.007; 95% CI 0.001 to 0.013; corrected P = 0.058). However, there was no significant correlation with TG (β = - 0.007; 95% CI - 0.018 to 0.004; corrected P = 0.526). Notably, it has been demonstrated that distinct inverted U-shaped and U-shaped curves exist when stratified by gender in our analysis. CONCLUSIONS Blood Hg exhibited a positive correlation with TC, LDL-C, and HDL-C in hypertensive adults in the USA. Nonetheless, no significant association was observed with TG.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Cardiology, Anqing First People's Hospital of Anhui Medical University, Anqing, 246003, China
- The Fifth Clinical College of Anhui Medical University, Hefei, 230032, China
| | - Jiecheng Peng
- Department of Cardiology, Anqing First People's Hospital of Anhui Medical University, Anqing, 246003, China.
| |
Collapse
|
5
|
Pálešová N, Řiháčková K, Kuta J, Pindur A, Šebejová L, Čupr P. Internal Flames: Metal(loid) Exposure Linked to Alteration of the Lipid Profile in Czech Male Firefighters (CELSPAC-FIREexpo Study). ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:679-686. [PMID: 39006815 PMCID: PMC11238583 DOI: 10.1021/acs.estlett.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
Increased wildfire activity increases the demands on fire rescue services and firefighters' contact with harmful chemicals. This study aimed to determine firefighters' exposure to toxic metal(loid)s and its association with the lipid profile. CELSPAC-FIREexpo study participants (including 110 firefighters) provided urine and blood samples to quantify urinary levels of metal(loid)s (arsenic, cadmium (Cd), mercury, and lead (Pb)), and serum lipid biomarkers (cholesterol (CHOL), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglycerides (TG)). The associations were investigated by using multiple linear regression and Bayesian weighted quantile sum (BWQS) regression. Higher levels of Pb were observed in firefighters. Pb was positively associated with CHOL and TG. Cd was negatively associated with HDL. In the BWQS model, the mixture of metal(loid)s was associated positively with CHOL (β = 14.75, 95% CrI = 2.45-29.08), LDL (β = 15.14, 95% CrI = 3.39-29.35), and TG (β = 14.79, 95% CrI = 0.73-30.42), while negatively with HDL (β = -14.96, 95% CrI = -25.78 to -1.8). Pb emerged as a key component in a metal(loid) mixture. The results suggest that higher exposure to lead and the mixture of metal(loid)s is associated with the alteration of the lipid profile, which can result in an unfavorable cardiometabolic profile, especially in occupationally exposed firefighters.
Collapse
Affiliation(s)
- Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Katarína Řiháčková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jan Kuta
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Aleš Pindur
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Training Centre of Fire Rescue Service, Fire Rescue Service of the Czech Republic, Ministry of the Interior, Trnkova 85, 628 00 Brno, Czech Republic
| | - Ludmila Šebejová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
6
|
Alves de Oliveira E, Cavalheiro da Silva L, Antônio de Andrade E, Dênis Battirola L, Lopes Tortorela de Andrade R. Emilia fosbergii Nicolson, a novel and effective accumulator for phytoremediation of mercury-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1076-1086. [PMID: 38059299 DOI: 10.1080/15226514.2023.2288906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Soil contamination by toxic metals threatens global public health, highlighting the need for cost-effective and ecologically sound site remediation. In this study, we assessed phytoremediation of Hg-contaminated soils by Emilia fosbergii Nicolson (Asteraceae). Pot experiment was conducted using a substrate of sand and vermiculite (1:1 volume ratio), treatments consisted of five Hg concentrations (0, 1, 3, 5, and 7 mg kg-1). Metal transfer rates were calculated, including accumulation (BAF), translocation (TF) and bioconcentration (BCF) factors. E. fosbergii roots exhibited greater Hg accumulation than other tissues, but biomass production and plant health were not significantly affected at the concentrations tested, as indicated by elongation factors and tolerance index. The results revealed BAF values between 2.18 and 7.14, TF values ranged between 0.15 and 0.52, and the BCF index varied between 8.97 and 26.58. Treatments with Hg content of 5 mg kg-1 and 7 mg kg-1 recorded the highest total Hg concentrations of 66 mg kg-1 and 65.53 mg kg-1 (roots), and 9.18 mg kg-1 and 33.88 mg kg-1 (aerial), respectively. E. fosbergii demonstrated promise for Hg phytoremediation due to its high accumulation capacity, indicated by regular TF and high BCF and BAF indexes, thus classifying it as a high Hg accumulator.
Collapse
Affiliation(s)
- Evandro Alves de Oliveira
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Larissa Cavalheiro da Silva
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Ednaldo Antônio de Andrade
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Leandro Dênis Battirola
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Ricardo Lopes Tortorela de Andrade
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| |
Collapse
|
7
|
Wang G, Fang L, Chen Y, Ma Y, Zhao H, Wu Y, Xu S, Cai G, Pan F. Association between exposure to mixture of heavy metals and hyperlipidemia risk among U.S. adults: A cross-sectional study. CHEMOSPHERE 2023; 344:140334. [PMID: 37788750 DOI: 10.1016/j.chemosphere.2023.140334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Previous studies have suggested that exposure to heavy metals might increase the risk of hyperlipidemia. However, limited research has investigated the association between exposure to mixture of heavy metals and hyperlipidemia risk. To explore the independent and combined effects of heavy metal exposure on hyperlipidemia risk, this study involved 3293 participants from the National Health and Nutrition Examination Survey (NHANES), including 2327 with hyperlipidemia and the remaining without. In the individual metal analysis, the logistic regression model confirmed the positive effects of barium (Ba), cadmium (Cd), mercury (Hg), Lead (Pb), and uranium (U) on hyperlipidemia risk, Ba, Cd, Hg and Pb were further validated in restricted cubic splines (RCS) regression model and identified as positive linear relationships. In the metal mixture analysis, weighted quantile sum (WQS) regression, Bayesian kernel machine regression (BKMR), and quantile-based g computation (qgcomp) models consistently revealed a positive correlation between exposure to metal mixture and hyperlipidemia risk, with Ba, Cd, Hg, Pb, and U having significant positive driving roles in the overall effects. These associations were more prominent in young/middle-aged individuals. Moreover, the BKMR model uncovered some interactions between specific heavy metals. In conclusion, this study offers new evidence supporting the link between combined exposure to multiple heavy metals and hyperlipidemia risk, but considering the limitations of this study, further prospective research is required.
Collapse
Affiliation(s)
- Guosheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Ye Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|