1
|
Chandra A, Ghosh S, Sarkar R, Sarkar S, Chattopadhyay KK. TiO 2 nanorods decorated Si nanowire hierarchical structures for UV light activated photocatalytic application. CHEMOSPHERE 2024; 352:141249. [PMID: 38266878 DOI: 10.1016/j.chemosphere.2024.141249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Water remediation techniques like photolysis have recently piqued the interest of many researchers due to water contamination resulting from heavy industrialization and urbanization. In the current work, as-synthesized TiO2 nanorod decorated vertically aligned silicon nanowire (SiNW) leads to a hierarchical morphological structure formation. The photocatalytic nature of the fabricated SiNW/TiO2 nanoheterojunction is examined by the dye degradation of textile pollutants like methylene blue (MB), rhodamine B (RhB), and eosin B (EB). The catalytic dye degradation investigations revealed that 4 h hydrothermal synthesis of TiO2 on the surface of SiNW (ST4) exhibited excellent catalytic behaviour. In the presence of H2O2 and UV irradiation, the ST4 nanoheterostructure can degrade 98.89% of the model pollutant methylene blue (MB) in 15 min, demonstrating remarkable photocatalytic performance. The direct Z-scheme heterojunction exhibited by the SiNW/TiO2 structure facilitates a more efficient charge transfer mechanism with higher reducing and oxidizing ability leading to enhanced photocatalytic behaviour. The degradation pathway examined by LC-MS studies demonstrated the complete breakdown of the organic MB dye molecules ultimately mineralizing into CO2, H2O, and other inorganic substances. The photocatalyst ST4 exhibited excellent reusability and stability after multiple cycles of dye degradation enabling its use in practical water purification purposes.
Collapse
Affiliation(s)
- Ankita Chandra
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Shrabani Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Ratna Sarkar
- Thin film and Nano Science Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032, India
| | - Sourav Sarkar
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - K K Chattopadhyay
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India; Thin film and Nano Science Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
2
|
Jing L, Xu Y, Xie M, Li Z, Wu C, Zhao H, Zhong N, Wang J, Wang H, Yan Y, Li H, Hu J. Cyano-Rich g-C 3 N 4 in Photochemistry: Design, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304404. [PMID: 37670529 DOI: 10.1002/smll.202304404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Indexed: 09/07/2023]
Abstract
Cyano-rich g-C3 N4 materials are widely used in various fields of photochemistry due to the very powerful electron-absorbing ability and electron storage function of cyano, as well as its advantages in improving light absorption, adjusting the energy band structure, increasing the polarization rate and electron density in the structure, active site concentration, and promoting oxygen activation ability. Notwithstanding, there is yet a huge knowledge break in the design, preparation, detection, application, and prospect of cyano-rich g-C3 N4 . Accordingly, an overall review is arranged to substantially comprehend the research progress and position of cyano-rich g-C3 N4 materials. An overall overview of the current research position in the synthesis, characterization (determination of their location and quantity), application, and reaction mechanism analysis of cyano-rich g-C3 N4 materials to provide a quantity of novel suggestions for cyano-modified carbon nitride materials' construction is provided. In view of the prevailing challenges and outlooks of cyano-rich g-C3 N4 materials, this paper will purify the growth direction of cyano-rich g-C3 N4 , to achieve a more in-depth exploration and broaden the applications of cyano-rich g-C3 N4 .
Collapse
Affiliation(s)
- Liquan Jing
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Meng Xie
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Zheng Li
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Chongchong Wu
- CNOOC Institute of Chemicals & Advanced Materials (CICM), Beijing, 102200, P. R. China
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Na Zhong
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Hui Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yubo Yan
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, P. R. China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|