1
|
Arayesh S, Tanhaei B, Khoshkho SM, Shahrak MN, Ayati A, Far SK. Enhanced dual-drug loaded κ-carrageenan/agar hydrogel films for wound dressing: Optimizing swelling and drug release. Int J Biol Macromol 2025; 306:141295. [PMID: 39984103 DOI: 10.1016/j.ijbiomac.2025.141295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/26/2024] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
This study presents the development of antibacterial hydrogel films based on natural biopolymers, κ-carrageenan and agar, crosslinked with KCl for wound healing applications. The hydrogels were loaded with tetracycline (TC) and clove extract to enhance antimicrobial properties, while the addition of Triton X-100 (TX-100) improved drug solubility and bioavailability, leading to higher drug release rates. Swelling behavior was evaluated in distilled water (DW), simulated wound fluid (SWF), and phosphate-buffered saline (PBS), with maximum swelling observed at 399 %, 222 %, and 124 %, respectively. Swelling kinetics followed pseudo-second-order and Korsmeyer-Peppas models, suggesting a Fickian diffusion mechanism. Drug release profiles were influenced by medium type and clove concentration, with the highest release observed in SWF at a clove concentration of 8 mg L-1. Antimicrobial tests demonstrated significant inhibition of E. coli and S. aureus, supporting the hydrogel's potential for infection control in wounds. Mechanical analysis showed that the hydrogels could withstand a peak force of 438.364 g, while water vapor permeability tests suggested an optimal moisture environment conducive to healing. The developed hydrogel films have a high potential for wound care, combining enhanced drug release, effective antimicrobial activity, and mechanical durability.
Collapse
Affiliation(s)
- Shirin Arayesh
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, Iran.
| | - Saeedeh Movaghar Khoshkho
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, Iran
| | - Mahdi Niknam Shahrak
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, Iran
| | - Ali Ayati
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, Iran
| | - Somayeh Khazaei Far
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
2
|
Dubey S, Virmani T, Yadav SK, Sharma A, Kumar G, Alhalmi A. Breaking Barriers in Eco-Friendly Synthesis of Plant-Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations. JOURNAL OF NANOMATERIALS 2024; 2024:1-48. [DOI: 10.1155/2024/9914079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanotechnology has emerged as a promising field in pharmaceutical research, involving producing unique nanoscale materials with sizes up to 100 nm via physiochemical and biological approaches. Nowadays more emphasis has been given to eco-friendly techniques for developing nanomaterials to enhance their biological applications and minimize health and environmental risks. With the help of green nanotechnology, a wide range of green metal, metal oxide, and bimetallic nanoparticles with distinct chemical compositions, sizes, and morphologies have been manufactured which are safe, economical, and environment friendly. Due to their biocompatibility and vast potential in biomedical (antibacterial, anticancer, antiviral, analgesic, anticoagulant, biofilm inhibitory activity) and in other fields such as (nanofertilizers, fermentative, food, and bioethanol production, construction field), green metal nanoparticles have garnered significant interest worldwide. The metal precursors combined with natural extracts such as plants, algae, fungi, and bacteria to get potent novel metal, metal oxide, and bimetallic nanoparticles such as Ag, Au, Co, Cu, Fe, Zr, Zn, Ni, Pt, Mg, Ti, Pd, Cd, Bi2O3, CeO2, Co3O4, CoFe2O4, CuO, Fe2O3, MgO, NiO, TiO2, ZnO, ZrO2, Ag-Au, Ag-Cr, Ag-Cu, Ag-Zn, Ag-CeO2, Ag-CuO, Ag-SeO2, Ag-TiO2, Ag-ZnO, Cu-Ag, Cu-Mg, Cu-Ni, Pd-Pt, Pt-Ag, ZnO-CuO, ZnO-SeO, ZnO-Se, Se-Zr, and Co-Bi2O3. These plant-mediated green nanoparticles possess excellent antibacterial and anticancer activity when tested against several microorganisms and cancer cell lines. Plants contain essential phytoconstituents (polyphenols, flavonoids, terpenoids, glycosides, alkaloids, etc.) compared to other natural sources (bacteria, fungi, and algae) in higher concentration that play a vital role in the development of green metal, metal oxide, and bimetallic nanoparticles because these plant-phytoconstituents act as a reducing, stabilizing, and capping agent and helps in the development of green nanoparticles. After concluding all these findings, this review has been designed for the first time in such a way that it imparts satisfactory knowledge about the antibacterial and anticancer activity of plant-mediated green metal, metal oxide, and bimetallic nanoparticles together, along with antibacterial and anticancer mechanisms. Additionally, it provides information about characterization techniques (UV–vis, FT-IR, DLS, XRD, SEM, TEM, BET, AFM) employed for plant-mediated nanoparticles, biomedical applications, and their role in other industries. Hence, this review provides information about the antibacterial and anticancer activity of various types of plant-mediated green metal, metal oxide, and bimetallic nanoparticles and their versatile application in diverse fields which is not covered in other pieces of literature.
Collapse
Affiliation(s)
- Swati Dubey
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | | | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
3
|
Larrañaga-Tapia M, Betancourt-Tovar B, Videa M, Antunes-Ricardo M, Cholula-Díaz JL. Green synthesis trends and potential applications of bimetallic nanoparticles towards the sustainable development goals 2030. NANOSCALE ADVANCES 2023; 6:51-71. [PMID: 38125589 PMCID: PMC10729871 DOI: 10.1039/d3na00761h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
The world faces threats that the United Nations has classified into 17 categories with different objectives as solutions for each challenge that are enclosed in the Sustainable Development Goals (SDGs). These actions involved the widespread use of science and technology as pathways to ensure their implementation. In this regard, sustainability science seeks the research community's contribution to addressing sustainable development challenges. Specifically, nanotechnology has been recognized as a key tool to provide disruptive and effective strategies to reach the SDGs. This review proposes the application of bimetallic nanoparticle substances capable of providing possible solutions to achieve target SDG 3: good health and well-being, SDG 6: clean water and sanitation, and SDG 12: responsible consumption and production. Furthermore, the term green nanotechnology is introduced in each section to exemplify how green synthesized bimetallic nanoparticles have been used to resolve each target SDG. This review also outlines the current scenario regarding the utilization of metallic nanomaterials in the market, together with the upscaling challenges and the lack of understanding of the long-term effects and hazards to the environment regarding bimetallic nanoparticles.
Collapse
Affiliation(s)
- Mariana Larrañaga-Tapia
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Benjamín Betancourt-Tovar
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Marcelo Videa
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Marilena Antunes-Ricardo
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
- Institute for Obesity Research, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Jorge L Cholula-Díaz
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| |
Collapse
|
4
|
Karimi-Maleh H, Erk N. A DNA biosensor strategy in monitoring of Vinorelbine breast cancer drug using catalytic effect of Pt-Pd-ZnO/SWCNTs. ENVIRONMENTAL RESEARCH 2023; 239:117338. [PMID: 37816425 DOI: 10.1016/j.envres.2023.117338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
The present research work introduced a new electrocatalyst (Pt-Pd-ZnO/SWCNTs in this case) to the fabrication of a powerful DNA biosensor in the monitoring of Vinorelbine anticancer drug. The characterization information confirms the high purity of Pt-Pd-ZnO/SWCNTs nanocomposite and an intercalation reaction between Vinorelbine anticancer drug and the guanine base of DNA in an aqueous solution. The reducing signal of DNA after interaction with Vinorelbine drug showed a linear analytical range of 0.1-120 μM with a detection limit of 0.05 μM. The biosensor was fabricated by layer-by-layer modification of glassy carbon electrode with ds-DNA and Pt-Pd-ZnO/SWCNTs nanocomposite and used as the working electrode to sensing of vinorelbine drug in pharmaceutical and other real samples with acceptable recovery data. The preferential intercalation mode for the binding of vinorelbine anticancer drug into the ds-DNA receptor is clarified using the molecular docking study.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
5
|
El-Wakeel ST, Fathy NA, Tawfik ME. Porous carbons prepared from a novel hard wood composite waste for effective adsorption of Pb(ii) and Cd(ii) ions. RSC Adv 2023; 13:34935-34946. [PMID: 38035242 PMCID: PMC10687519 DOI: 10.1039/d3ra06244a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
In our previous investigations, a hard wood composite (HWC) was formulated by adding rice straw, as a filler to the recycled polystyrene foam waste at mass ratio (50/50) at 170 °C and pressed under 40 kPa. Here, the disposed HWC product as a model scrap was applied for production of porous carbons enclosed with graphene sheets. To attain this approach, HWC was hydrothermally carbonized (S1) followed by either post-heat treatment (S2) or potassium hydroxide (KOH, S3) activation at 750 °C for 2 hours. The properties of prepared samples were evaluated using SEM, ATR-IR, and porosity measurements. The adsorption performance of the obtained porous carbons toward removal of lead (Pb(ii)) and cadmium (Cd(ii)) ions from aqueous solutions was investigated under different operating conditions like contact time, initial pH, initial metal ions concentration and adsorbent dose. Kinetic models such as pseudo-first order, pseudo-second order and intraparticle diffusion were used to analyze the adsorption data. Langmuir, Freundlich, Dubinin-Radushkevich and Redlich-Peterson isotherms were applied. Thermodynamics and regeneration studies were performed. The sample (S3) comprised a micro-mesoporous carbon structure encompassed by graphene sheets, with the largest total surface area (422 m2 g-1) and adsorption capacities for Pb(ii) and Cd(ii) ions of 207.9 and 119.6 mg g-1, respectively. The experimental adsorption data were best elucidated using Langmuir and pseudo second-order kinetic models. Thermodynamic experiments confirmed that adsorption is an endothermic and spontaneous process. Conclusively, the investigated HWC waste is a promising carbonaceous precursor for preparing effective porous graphene-carbons used in the removal heavy metals from their aqueous stream.
Collapse
Affiliation(s)
- Shaimaa T El-Wakeel
- Water Pollution Research Department, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| | - Nady A Fathy
- Physical Chemistry Department, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| | - Magda E Tawfik
- Polymers and Pigments Department, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| |
Collapse
|
6
|
Bayat R, Bekmezci M, Akin M, Isik I, Sen F. Nitric Oxide Detection Using a Corona Phase Molecular Recognition Site on Chiral Single-Walled Carbon Nanotubes. ACS APPLIED BIO MATERIALS 2023; 6:4828-4835. [PMID: 37830479 DOI: 10.1021/acsabm.3c00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Semiconducting single-walled carbon nanotubes (s-SWCNT) are structures that fluoresce in the near-infrared region. By coating SWCNT surfaces with polymeric materials such as single-chain DNA, changes in fluorescence emission occur in the presence of reagents. In this way, polymer-coated SWCNT structures allow them to be used as optical sensors for single molecule detection. Especially today, the inadequacy of the methods used in the detection of cellular molecules makes the early diagnosis of diseases such as cancer difficult at the single-molecule level. In this study, the detection of nitric oxide (NO) signals, which are a marker of cancer, was carried out at the single-molecule level. In this context, a sensor structure was formed by coating the 7,6-chiral s-SWCNT surface with ssDNA with different oligonucleotide lengths (AT). The sensor structure was characterized by using UV-vis spectroscopy and Raman spectroscopy microscopy. After formation of the sensor structure, a selectivity library was created using various molecules. As a result of the coating of the SWCNT (7,6) surface with DNA corona phase formation, Raman peaks at 195 and 276 cm-1 were observed to shift to the right. Additionally, the selectivity library results showed that the (AT)30 sequence can be used in NO detection. As a result of the studies using SWCNT (7.6)- (AT)30, the limit of detection (LOD) and limit of determination (LOQ) values of the sensor against NO were found to be 1.24 and 4.13 μM, respectively.
Collapse
Affiliation(s)
- Ramazan Bayat
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000 Kutahya, Türkiye
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya 43000, Türkiye
| | - Muhammed Bekmezci
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000 Kutahya, Türkiye
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya 43000, Türkiye
| | - Merve Akin
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000 Kutahya, Türkiye
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya 43000, Türkiye
| | - Iskender Isik
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya 43000, Türkiye
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000 Kutahya, Türkiye
- SRG Incorporated Company, Kutahya Design Technopole, Calca OSB Neighbourhood, 431000 Kütahya, Türkiye
| |
Collapse
|
7
|
Mori Y, Saito R, Thai VP. Pseudo Core–Shell-structured Minute Copper/Silver Bimetallic Nanoparticles Synthesized via Water-based One-pot Method. CHEM LETT 2023; 52:669-673. [DOI: 10.1246/cl.230205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yasutaka Mori
- Department of Applied Chemistry and Chemical Engineering, National Institute of Technology Toyama College, 13 Hongo-machi, Toyama 939-8630, Japan
| | - Reiko Saito
- Department of Chemical Science and Engineering, School of Material and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-7 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Van-Phuoc Thai
- Faculty of Mechanical Engineering, HCMC University of Technology and Education, Ho Chi Minh city 71307, Vietnam
| |
Collapse
|
8
|
Zhang K, Zhang X, Rong Y, Niu Q, Jin P, Ma X, Yang C, Liang W. Supramolecular recognition enhanced electrochemical sensing: β-cyclodextrin and Pd nanoparticle co-decorated 3D reduced graphene oxide nanocomposite-modified glassy carbon electrode for the quantification of ractopamine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37475678 DOI: 10.1039/d3ay00872j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Ractopamine (RAC) is universally known for improving lean meat percentage in livestock and thus is widely introduced as a feed additive. However, it is difficult to eliminate the RAC residue in animal tissues from the biological system and will inevitably harm human health. Hence, detecting RAC molecules in biological samples is extremely significant. Herein, a novel strategy of supramolecular recognition-enhanced electrochemical sensing is presented. This platform was constructed by coupling β-cyclodextrin (β-CD) with palladium nanoparticles (Pd NPs)-functionalized three-dimensional reduced graphene oxide (3D-rGO) to form a nanocomposite (3D-rGO/Pd/β-CD), which was further used to modify a glassy carbon electrode (GCE) for RAC detection. Benefiting from the attractive electrical conductivity and catalytic activity of 3D-rGO/Pd, as well as the unique small-molecule-recognition ability of β-CD demonstrated by 1H NMR spectrum, which revealed the 1 : 2 binding mode of RAC with β-CD, increased peak current signals of RAC were observed in the cyclic voltammetry (CV) test. Under optimized conditions, the wide linear concentration range spanned 1-95 μM, along with a relatively low detection limit of 0.12 μM (S/N = 3), as evidenced by the differential pulse voltammetry (DPV) approach. The platform also exhibited satisfactory stability and fine reproducibility, as well as high selectivity and good anti-interference capability. Moreover, this as-obtained sensor was efficiently applied in pork samples with a high recovery rate (96.44-103.99%), which provides a promising view of its electrochemical biosensing ability in practical applications.
Collapse
Affiliation(s)
- Kai Zhang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Xiaoyuan Zhang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Yanqin Rong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Qingfang Niu
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Pengyue Jin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Xuewen Ma
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Wenting Liang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
9
|
Ayati A, Tanhaei B, Beiki H, Krivoshapkin P, Krivoshapkina E, Tracey C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. CHEMOSPHERE 2023; 323:138241. [PMID: 36841446 DOI: 10.1016/j.chemosphere.2023.138241] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Over the last decade, the removal of pharmaceuticals from aquatic bodies has garnered substantial attention from the scientific community. Ibuprofen (IBP), a non-steroidal anti-inflammatory drug, is released into the environment in pharmaceutical waste as well as medical, hospital, and household effluents. Adsorption technology is a highly efficient approach to reduce the IBP in the aquatic environment, particularly at low IBP concentrations. Due to the exceptional surface properties of carbonaceous materials, they are considered ideal adsorbents for the IBP removal of, with high binding capacity. Given the importance of the topic, the adsorptive removal of IBP from effluent using various carbonaceous adsorbents, including activated carbon, biochar, graphene-based materials, and carbon nanostructures, has been compiled and critically reviewed. Furthermore, the adsorption behavior, binding mechanisms, the most effective parameters, thermodynamics, and regeneration methods as well as the cost analysis were comprehensively reviewed for modified and unmodified carbonaceous adsorbents. The compiled studies on the IBP adsorption shows that the IBP uptake of some carbon-based adsorbents is significantly than that of commercial activated carbons. In the future, much attention is needed for practical utilization and upscaling of the research findings to aid the management and sustainability of water resource.
Collapse
Affiliation(s)
- Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia.
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Hossein Beiki
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Elena Krivoshapkina
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Chantal Tracey
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|