1
|
Yang L, Zhang Z, Zhou T, Qi W, Wang M. An oxidase-like nanozyme-based sensor array for the specific detection and discrimination of catechins. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2763-2770. [PMID: 40094452 DOI: 10.1039/d4ay02133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In this study, a nanozyme-based sensor array was developed to achieve the identification and discrimination of three catechins (catechin, epicatechin, and epigallocatechin). The Fc@ZIF-67 NC nanozyme was synthesized with oxidase-like activity through the high-temperature carbonization of ferrocene-encapsulated ZIF-67. Two Fc@ZIF-67 NC-involved oxidase-like reactions were designed to generate three detectable signals (including two colorimetric signals and one fluorescent signal), which constituted the fingerprints of the analytes. By combining with linear discriminant analysis (LDA), different kinds and concentrations of catechins can be discriminated with this sensor array. Besides, the sensor array was proved feasible in the identification of catechins in real samples. This method provides a promising methodology for the discrimination and identification of natural products in food.
Collapse
Affiliation(s)
- Lijun Yang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Zhiyi Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Tiantian Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Zhao H, Jin C, Yang X, Lu P, Cheng Y. Synthesis of a one-dimensional carbon nanotube-decorated three-dimensional crucifix carbon architecture embedded with Co 7Fe 3/Co 5.47N nanoparticles for high-performance microwave absorption. J Colloid Interface Sci 2023; 645:22-32. [PMID: 37137275 DOI: 10.1016/j.jcis.2023.04.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Low-dimensional cell-decorated three-dimensional (3D) hierarchical structures are considered excellent candidates for achieving remarkable microwave absorption. In the present work, a one-dimensional (1D) carbon nanotube (CNT)-decorated 3D crucifix carbon framework embedded with Co7Fe3/Co5.47N nanoparticles (NPs) was fabricated by the in-situ pyrolysis of a trimetallic metal-organic framework (MOF) precursor (ZIF-ZnFeCo). Co7Fe3/Co5.47N NPs were uniformly dispersed on the carbon matrix. The 1D CNT nanostructure was well regulated on the 3D crucifix surface by changing the pyrolysis temperature. The synergistic effect of 1D CNT and the 3D crucifix carbon framework increased the conductive loss, and Co7Fe3/Co5.47N NPs induced interfacial polarization and magnetic loss; thus, the composite manifested superior microwave absorption performance. The optimum absorption intensity was -54.0 dB, and the effective absorption frequency bandwidth reached 5.4 GHz at a thickness of 1.65 mm. The findings of this work could provide significant guidance for the fabrication of MOF-derived hybrids for high-performance microwave absorption applications.
Collapse
Affiliation(s)
- Huanqin Zhao
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China.
| | - Changqing Jin
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China.
| | - Xin Yang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Ping Lu
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Yan Cheng
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
3
|
Chinnakutti KK, C Maridevaru M, Kaimal R, Paramasivam N, Kirubaharan AMK, Theerthagiri J, M L AK, Manickam S, Anandan S, Choi MY. Electrochemical detection of arsenic (III) hazardous chemicals using cubic CsPbBr 3 single crystals: Structural insights from DFT study. ENVIRONMENTAL RESEARCH 2023; 229:115940. [PMID: 37080276 DOI: 10.1016/j.envres.2023.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Long-term exposure to the highly toxic heavy metal arsenic can harm ecological systems and pose serious health risks to humans. Arsenic pollutant in water and the food chain must be addressed, and active prompt detection of As(III) is essential. The development of an effective detection method for As(III) ions is urgently needed to slow the alarming growth of arsenic pollution in the environment and safeguard the well-being of future generations. This study presents the results of our exhaustive investigation into cubic CsPbBr3 single crystals, the glassy carbon (GC) electrode modification with CsPbBr3 single crystals prepared by direct solvent evaporation, as well as our observations of the material's remarkable electrocatalytic properties and exceptional anti-interference sensing of As(III) ions in neutral pH media. The developed CsPbBr3/GC is exceptionally useful for the ultra-sensitive and specific identification of arsenic in water, exhibiting a detection limit of 0.381 μmol/L, a rapid response across a defined range of 0.1-25 μmol/L, and an ultra-sensitivity of 0.296 μA/μmolL-1. CsPbBr3/GCE (prepared without a specific reagent) is superior to other modified electrodes used as sensors in electrocatalytic activity, detection limit, analytical sensitivity, and stability response.
Collapse
Affiliation(s)
- Karthik Kumar Chinnakutti
- Department of Chemistry, Vinayaka Missions Kirupananda Variyar Arts and Science College, Vinayaka Missions Research Foundation (Deemed to Be University), Salem, 636308, India.
| | - Madappa C Maridevaru
- Nanomaterials and Solar Energy Conversion Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Reshma Kaimal
- Nanomaterials and Solar Energy Conversion Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Naveena Paramasivam
- Condensed Matter Theory Lab, Department of Physics, National Institute of Technology, Tiruchirappalli, 620015, India
| | - A M Kamalan Kirubaharan
- Coating Department, Centre for Functional and Surface Functionalised Glass, Alexander Dubcek University of Trencin, Trencin, 91150, Slovakia
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Aruna Kumari M L
- Department of Chemistry, The Oxford College of Science, Bengaluru, Karnataka, 560102, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sambandam Anandan
- Nanomaterials and Solar Energy Conversion Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India.
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|