1
|
Laczi K, Bodor A, Kovács T, Magyar B, Perei K, Rákhely G. Methanogenesis coupled hydrocarbon biodegradation enhanced by ferric and sulphate ions. Appl Microbiol Biotechnol 2024; 108:449. [PMID: 39207532 PMCID: PMC11362221 DOI: 10.1007/s00253-024-13278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Bioremediation provides an environmentally sound solution for hydrocarbon removal. Although bioremediation under anoxic conditions is slow, it can be coupled with methanogenesis and is suitable for energy recovery. By altering conditions and supplementing alternative terminal electron acceptors to the system to induce syntrophic partners of the methanogens, this process can be enhanced. In this study, we investigated a hydrocarbon-degrading microbial community derived from chronically contaminated soil. Various hydrocarbon mixtures were used during our experiments in the presence of different electron acceptors. In addition, we performed whole metagenome sequencing to identify the main actors of hydrocarbon biodegradation in the samples. Our results showed that the addition of ferric ions or sulphate increased the methane yield. Furthermore, the addition of CO2, ferric ion or sulphate enhanced the biodegradation of alkanes. A significant increase in biodegradation was observed in the presence of ferric ions or sulphate in the case of all aromatic components, while naphthalene and phenanthrene degradation was also enhanced by CO2. Metagenome analysis revealed that Cellulomonas sp. is the most abundant in the presence of alkanes, while Ruminococcus and Faecalibacterium spp. are prevalent in aromatics-supplemented samples. From the recovery of 25 genomes, it was concluded that the main pathway of hydrocarbon activation was fumarate addition in both Cellulomonas, Ruminococcus and Faecalibacterium. Chloroflexota bacteria can utilise the central metabolites of aromatics biodegradation via ATP-independent benzoyl-CoA reduction. KEY POINTS: • Methanogenesis and hydrocarbon biodegradation were enhanced by Fe3+ or SO42- • Cellulomonas, Ruminococcus and Faecalibacterium can be candidates for the main hydrocarbon degraders • Chloroflexota bacteria can utilise the central metabolites of aromatics degradation.
Collapse
Affiliation(s)
- Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary.
- Biological Research Centre, Institute of Plant Biology, Hungarian Research Network, Szeged, Hungary.
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Biological Research Centre, Institute of Biophysics, Hungarian Research Network, Szeged, Hungary
| | - Tamás Kovács
- Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Pécs, Hungary
| | | | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Biological Research Centre, Institute of Biophysics, Hungarian Research Network, Szeged, Hungary
| |
Collapse
|
2
|
Wang L, Nie Y, Chen X, Xu J, Ji Z, Song W, Wei X, Song X, Wu XL. Biodegradation of Crude Oil by Nitrate-Reducing, Sulfate-Reducing, and Methanogenic Microbial Communities under High-Pressure Conditions. Microorganisms 2024; 12:1543. [PMID: 39203385 PMCID: PMC11356252 DOI: 10.3390/microorganisms12081543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Carbon capture, utilization, and storage (CCUS) is an important component in many national net-zero strategies, and ensuring that CO2 can be safely and economically stored in geological systems is critical. Recent discoveries have shown that microbial processes (e.g., methanogenesis) can modify fluid composition and fluid dynamics within the storage reservoir. Oil reservoirs are under high pressure, but the influence of pressure on the petroleum microbial community has been previously overlooked. To better understand microbial community dynamics in deep oil reservoirs, we designed an experiment to examine the effect of high pressure (12 megapascals [MPa], 60 °C) on nitrate-reducing, sulfate-reducing, and methanogenic enrichment cultures. Cultures were exposed to these conditions for 90 d and compared with a control exposed to atmospheric pressure (0.1 MPa, 60 °C). The degradation characteristic oil compounds were confirmed by thin-layer analysis of oil SARA (saturates, aromatics, resins, and asphaltenes) family component rods. We found that the asphaltene component in crude oil was biodegraded under high pressure, but the concentration of asphaltenes increased under atmospheric pressure. Gas chromatography analyses of saturates showed that short-chain saturates (C8-C12) were biodegraded under high and atmospheric pressure, especially in the methanogenic enrichment culture under high pressure (the ratio of change was -81%), resulting in an increased relative abundance of medium- and long-chain saturates. In the nitrate-reducing and sulfate-reducing enrichment cultures, long-chain saturates (C22-C32) were biodegraded in cultures exposed to high-pressure and anaerobic conditions, with a ratio of change of -8.0% and -2.3%, respectively. However, the relative proportion of long-chain saturates (C22-C32) increased under atmospheric pressure. Gas Chromatography Mass Spectrometry analyses of aromatics showed that several naphthalene series compounds (naphthalene, C1-naphthalene, and C2-naphthalene) were biodegraded in the sulfate-reducing enrichment under both atmospheric pressure and high pressure. Our study has discerned the linkages between the biodegradation characteristics of crude oil and pressures, which is important for the future application of bioenergy with CCUS (bio-CCUS).
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Enhanced Oil & Gas Recovery, Beijing 100083, China; (L.W.); (X.C.); (Z.J.); (X.W.)
- Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100083, China; (Y.N.); (J.X.)
| | - Xinglong Chen
- State Key Laboratory of Enhanced Oil & Gas Recovery, Beijing 100083, China; (L.W.); (X.C.); (Z.J.); (X.W.)
- Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
| | - Jinbo Xu
- College of Engineering, Peking University, Beijing 100083, China; (Y.N.); (J.X.)
| | - Zemin Ji
- State Key Laboratory of Enhanced Oil & Gas Recovery, Beijing 100083, China; (L.W.); (X.C.); (Z.J.); (X.W.)
- Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
| | - Wenfeng Song
- Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
| | - Xiaofang Wei
- State Key Laboratory of Enhanced Oil & Gas Recovery, Beijing 100083, China; (L.W.); (X.C.); (Z.J.); (X.W.)
- Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
| | - Xinmin Song
- State Key Laboratory of Enhanced Oil & Gas Recovery, Beijing 100083, China; (L.W.); (X.C.); (Z.J.); (X.W.)
- Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100083, China; (Y.N.); (J.X.)
- Institute of Ecology, Peking University, Beijing 100083, China
| |
Collapse
|
3
|
Ma J, Liu H, Chen H, Xiong H, Tong L, Guo G. Is redox zonation an appropriate method for determining the stage of natural remediation in deep contaminated groundwater? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172224. [PMID: 38599415 DOI: 10.1016/j.scitotenv.2024.172224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Groundwater contamination resulting from petroleum development poses a significant threat to drinking water sources, especially in developing countries. In situ natural remediation methods, including microbiological processes, have gained popularity for the reduction of groundwater contaminants. However, assessing the stage of remediation in deep contaminated groundwater is challenging and costly due to the complexity of diverse geological conditions and unknown initial concentrations of contaminants. This research proposes that redox zonation may be a more convenient and comprehensive indicator than the concentration of contaminants for determining the stage of natural remediation in deep groundwater. The combination of sequencing microbial composition using the high-throughput 16S rRNA gene and function predicted by FAPROTAX is a useful approach to determining the redox conditions of different contaminated groundwater. The sulfate-reducing environment, represented by Desulfobacteraceae, Peptococcaceae, Desulfovibrionaceae, and Desulfohalobiaceae could be used as characteristic early stages of remediation for produced water contamination in wells with high concentrations of SO42-, benzene, and salinity. The nitrate-reducing environment, enriched with microorganisms related to denitrification, sulfur-oxidizing, and methanophilic microorganisms could be indicative of the mid stages of in situ bioremediation. The oxygen reduction environment, enriched with oligotrophic and pathogenic Sphingomonadaceae, Caulobacteraceae, Syntrophaceae, Legionellales, Moraxellaceae, and Coxiellaceae, could be indicative of the late stages of remediation. This comprehensive approach could provide valuable insights into the process of natural remediation and facilitate improved environmental management in areas of deep contaminated groundwater.
Collapse
Affiliation(s)
- Jie Ma
- Faculty of Resources and Environmental Science and Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Hui Liu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Huihui Chen
- Faculty of Resources and Environmental Science and Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Huanhuan Xiong
- Faculty of Resources and Environmental Science and Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Lei Tong
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Gang Guo
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|