1
|
Vikal S, Meena S, Gautam YK, Kumar A, Sethi M, Meena S, Gautam D, Singh BP, Agarwal PC, Meena ML, Parewa V. Visible-light induced effective and sustainable remediation of nitro organics pollutants using Pd-doped ZnO nanocatalyst. Sci Rep 2024; 14:22430. [PMID: 39341891 PMCID: PMC11438909 DOI: 10.1038/s41598-024-72713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Nitroaromatic compounds represent a class of highly toxic pollutants discharged into aquatic environments by various industrial activities, posing significant threats to ecological integrity and human health due to their persistent and hazardous nature. In this study, Pd-doped ZnO nanoparticles were investigated as a potential solution for the degradation of nitro organics, offering heightened photocatalytic efficacy and prolonged stability. The synthesis of Pd-doped ZnO NPs was achieved via the hydrothermal method, with subsequent analysis through XRD spectra and XPS confirming successful Pd doping within the ZnO matrix. Characterization through FESEM and HRTEM unveiled the heterogeneous morphologies of both undoped and Pd-doped ZnO nanoparticles. Additionally, UV-vis and PL spectroscopy provided insights into the optical properties, chemical bonding, and defect structures of the synthesized Pd-doped ZnO NPs. Pd doping induces a redshift in ZnO's absorption spectra, reducing the bandgap from 3.12 to 2.94 eV as Pd concentration rises from 0 to 0.2 wt.%. The photocatalytic degradation, following pseudo-first-order kinetics, achieved 90% nitrobenzene abatement (200 µg/L, pH 7) under visible light within 320 min with a catalyst loading of 16 µg/mL. The photocatalytic efficacy of 0.08 wt% Pd-doped ZnO (k = 0.058 min⁻1) exhibited a 25-fold enhancement compared to bare ZnO (k = 3.1 × 10-4 min-1). Subsequent quenching and ESR experiments identified hydroxyl radicals (OH•) as the predominant active species in the degradation mechanism. Mass spectrometry analysis unveiled potential breakdown intermediates, illuminating a plausible degradation pathway. The investigated Pd-doped ZnO nanoparticles demonstrated reusability for up to five successive treatment cycles, offering a sustainable solution to nitro organics contamination challenges.
Collapse
Affiliation(s)
- Sagar Vikal
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Uttar Pradesh, Meerut, 250004, India
| | - Savita Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Yogendra K Gautam
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Uttar Pradesh, Meerut, 250004, India.
| | - Ashwani Kumar
- Department of Physics, Regional Institute of Education (RIE), Bhubaneswar, Odisha, 751022, India.
| | - Mukul Sethi
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Swati Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Durvesh Gautam
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Uttar Pradesh, Meerut, 250004, India
| | - Beer Pal Singh
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Uttar Pradesh, Meerut, 250004, India
| | - Prakash Chandra Agarwal
- Department of Physics, Regional Institute of Education (RIE), Bhubaneswar, Odisha, 751022, India
| | - Mohan Lal Meena
- Department of Chemical Engineering, National Institute of Technology Karnataka - Surathkal, Srinivasnagar P.O, Mangalore, Karnataka, 575025, India
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India.
| |
Collapse
|
2
|
Kumar K, Saini P, Sethi M, Saini S, Gurjar A, Konar A, Dietzek-Ivanšić B, Weigand W, Parewa V. Vacancy-Engineered 1D Nanorods with Spatially Segregated Dual Redox Sites for Visible-Light-Driven Cooperative CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43498-43511. [PMID: 39115165 DOI: 10.1021/acsami.4c06834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Cooperative CO2 photoreduction with tailored organic synthesis offers a potent avenue for harnessing concurrently generated electrons and holes, facilitating the creation of both solar fuels and specialized chemical compounds. However, controlling the crystallization and morphologies of metal-free molecular nanostructures with exceptional photocatalytic activities toward CO2 reduction remains a significant challenge. These hurdles encompass insufficient CO2 activation potential, sluggish multielectron processes, delayed charge-separation kinetics, inadequate storage of long-lived photoexcitons, unfavorable thermodynamic conditions, and the precise control of product selectivity. Here, melem oligomer 2D nanosheets (MNSs) synthesized through pyrolysis are transformed into 1D nanorods (MNRs) at room temperature with the simultaneous engineering of vacancies and morphology. Transient absorption spectral analysis reveals that vacancies in MNRs trap charges, extending charge carrier lifetimes. Additionally, carbon vacancies enhance CO2 adsorption by increasing amine functional centers. The photocatalytic performance of MNRs for CO2 reduction coupled with benzyl alcohol oxidation is approximately ten times higher (CH3OH and aromatic aldehyde production rate 27 ± 0.5 and 93 ± 0.5 mmol g-1 h-1, respectively) than for the MNSs (CH3OH and aromatic aldehyde production rate 2.9 ± 0.5 and 9 ± 0.5 mmol g-1 h-1, respectively). The CO2 reduction pathway involved the carbon-coordinated formyl pathway through the formation of *COOH and *CHO intermediates, as mapped by in situ Fourier-transform infrared spectroscopy. The superior performance of MNRs is attributed to favorable energy-level alignment, enriched amine surfaces, and unique morphology, enhancing solar-to-chemical conversion.
Collapse
Affiliation(s)
- Krishan Kumar
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004 India
| | - Pratibha Saini
- Institute Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena D-07743, Germany
- Institute for Physical Chemistry (IPC), Friedrich Schiller University Jena, Jena D-07743, Germany
| | - Mukul Sethi
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004 India
| | - Surendra Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004 India
| | - Aditya Gurjar
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004 India
| | - Arindam Konar
- Institute for Physical Chemistry (IPC), Friedrich Schiller University Jena, Jena D-07743, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, Jena 07745, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, Jena 07743, Germany
| | - Wolfgang Weigand
- Institute Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena D-07743, Germany
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004 India
| |
Collapse
|
3
|
Sheshmani S, Mardali M, Shokrollahzadeh S, Bide Y. Starch-derived carbon quantum dots: Unveiling structural insights and photocatalytic potential as a bio-sourced metal-free semiconductor. Int J Biol Macromol 2024; 271:132535. [PMID: 38777015 DOI: 10.1016/j.ijbiomac.2024.132535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The optical appeal and sustainability of carbon quantum dots (CQDs) have led to these nanoparticles swiftly gaining attention and emerging as a new, multifunctional class of nanomaterials. This work centers on the hydrothermal preparation of CQDs utilizing starch, an abundant and renewable biopolymer, as the precursor. Extensive characterization via spectroscopy and microscopy techniques revealed that the starch-derived CQDs exhibit a spherical nanoscale morphology averaging a ∼ 4 nm diameter, demonstrating a red-orange photoluminescence emission. Diffuse reflectance spectroscopic analysis verified their semiconductor behavior, with an estimated direct band gap of 4.1 eV comparable to conventional semiconductors. The prepared CQDs demonstrated considerable promise as metal-free, semiconductor photocatalysts for degrading aqueous dye pollutants under UV irradiation. High photodegradation efficiencies of 45.11 %, 62.94 %, and 91.21 % were achieved for Acid Blue 21, Reactive Blue 94, and Reactive TB 133 dyes, respectively. Systematic investigations of critical process parameters like pH, CQDs dosage, dye concentration, and contact time provided vital insights into the photocatalytic mechanism. The bio-sourced CQD nanomaterials offer a sustainable pathway for effective environmental remediation.
Collapse
Affiliation(s)
- Shabnam Sheshmani
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
| | - Mahan Mardali
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Shokrollahzadeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Yasamin Bide
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| |
Collapse
|
4
|
Meena S, Sethi M, Saini S, Kumar K, Saini P, Meena S, Kashyap S, Yadav M, Meena ML, Dandia A, Nirmal NK, Parewa V. Molecular surface-dependent light harvesting and photo charge separation in plant-derived carbon quantum dots for visible-light-driven OH radical generation for remediation of aromatic hydrocarbon pollutants and real wastewater. J Colloid Interface Sci 2024; 660:756-770. [PMID: 38271811 DOI: 10.1016/j.jcis.2024.01.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Despite the growing emphasis on eco-friendly nanomaterials as energy harvesters, scientists are actively searching for metal-free photocatalysts to be used in environmental remediation strategies. Developing renewable resource-based carbon quantum dots (CQDs) as the sole photocatalyst to harvest visible light for efficient pollutant degradation is crucial yet challenging, particularly for addressing the escalating issue of water deterioration. Moreover, the photocatalytic decomposition of H2O2 under visible light irradiation remains an arduous task. Based on this, we designed two types of CQDs, C-CQDs (carboxylic-rich) and A-CQDs (amine-rich) with distinct molecular surfaces. Owing to the higher amount of upward band bending induced by amine-rich molecular surface, A-CQDs efficiently harvest the visible light and prevent recombination kinetics resulting in prolonged lifetimes (25 ps), and augmented charge carrier density (35.7 × 1018) of photoexcited charge carriers. A-CQDs enabled rapid visible-light-driven photolysis of H2O2 (k = 0.058 min-1) and produced higher quantity of •OH radicals (0.158 μmol/sec) for the mineralization of petroleum waste, BETX (i.e. Benzene, Ethylbenzene, Toluene and Xylene) (k = 0.017-0.026 min-1) and real textile wastewater (k = 0.026 min-1). To assess comparative toxicities of both remediated and non-remediated real wastewater samples in a time and dose depended manner, Drosophila melanogaster was used as a model organism. The findings unequivocally demonstrate the potential of remediated wastewater for watering urban forestry.
Collapse
Affiliation(s)
- Savita Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Mukul Sethi
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Surendra Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Krishan Kumar
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Pratibha Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India; Friedrich Schiller Univ Jena, Inst Anorgan & Analyt Chem, Humboldt Str 8, D-07743 Jena, Germany
| | - Swati Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Sunidhi Kashyap
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, India
| | - Monika Yadav
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, India
| | - Mohan Lal Meena
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru 575025, India
| | - Anshu Dandia
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Naresh Kumar Nirmal
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, India
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India.
| |
Collapse
|
5
|
Bai Y, Hao D, Feng S, Lu L, Wang Q. A magnetically reusable Ce-MOF/GO/Fe 3O 4 composite for effective photocatalytic degradation of chlortetracycline. Phys Chem Chem Phys 2024; 26:3832-3841. [PMID: 38221795 DOI: 10.1039/d3cp04499h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Herein, we report a novel 1/GO/Fe3O4 photocatalyst, comprising Ce(BTB)(H2O) (MOF-1, H3BTB = 1,3,5-benzenetrisbenzoic acid), graphene oxide (GO), and iron oxide (Fe3O4) for photocatalytic degradation of chlortetracycline (CTC). This design enables the effective transfer of electrons from the MOF to GO, thereby reducing the photoelectron-hole recombination rate. Therefore, the optimized 1/GO/Fe3O4 photocatalyst with H2O2 shows the highest photocatalytic activity toward CTC. The kinetic constant is 5.4 times that in the system of MOF-1 and hydrogen peroxide, which usually acted as efficient electron acceptors to improve the photocatalytic performance of MOFs. More importantly, light absorption is extended from the ultraviolet to the visible region. Furthermore, 1/GO/Fe3O4 can be quickly recycled under an applied magnetic field and displays outstanding stability and reusability. According to the radical trapping experiments and electron paramagnetic resonance results, hydroxyl radicals, superoxide radicals, and holes all contribute to excellent photocatalytic activity. The possible catalytic mechanism of 1/GO/Fe3O4 is tentatively proposed. This work aims to explore the synergistic effect between metal-organic frameworks (MOFs) and GO, and provide a theoretical basis for MOF-based composites to remove antibiotic contaminants in the environment.
Collapse
Affiliation(s)
- Yuting Bai
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.
- Department of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Jinzhong, Shanxi, 030600, China
| | - Derek Hao
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
| | - Sisi Feng
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China.
| | - Liping Lu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Saini S, Saini P, Kumar K, Sethi M, Meena P, Gurjar A, Dandia A, Dhuria T, Parewa V. Unlocking the Molecular Behavior of Natural Amine-Targeted Carbon Quantum Dots for the Synthesis of Diverse Pharmacophore Scaffolds via an Unusual Nanoaminocatalytic Route. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49083-49094. [PMID: 37819203 DOI: 10.1021/acsami.3c08812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Despite the fact that carbon quantum dots (CQDs) have significant catalytic potential, only emblematic applications that rely on simple acid-base or hydrogen-bonding activation pathways have been reported. In this study, natural amine-targeted CQDs (NAT-CQDs) have been successfully fabricated using a sustainable technique that harnesses a renewable green source. Based on a holistic sustainable assessment, the present approach for the synthesis of NAT-CQDs surpasses previously reported methods in terms of estimated circular and good-manufacturing-practice metrics. A set of spectroscopic and analytical techniques, including FTIR, XPS, conductometric assay, pH titration, 19FNMR, and 13CNMR confirms the presence of the assessable amino-rich groups (0.0083N) at the surface of NAT-CQDs. The occurrence of surface amine groups unlocked the molecular behavior of as-prepared NAT-CQDs and makes them an unprecedented nanoaminocatalytic platform for the synthesis of diverse pharmacophore scaffolds (>40 examples) via a one-pot Knoevenagel/(aza) Michael addition reaction in water at room temperature. The assessable amine group can covalently activate carbonyl groups through nucleophilic iminium activation modes in water and facilitate the ability to build valuable and therapeutic scaffolds on a gram scale. By transferring significant molecular primacy at the frontier of nanoscale materials, NAT-CQDs can thus bridge the gap between the nanoscale and molecular domains. This protocol can also be applied for the preparation of therapeutic anticoagulant drugs, warfarin, and coumachlor. All the reactions exhibited a high atom economy, low E-factor, low process mass intensity (PMI), high reaction mass efficiency (RME), high carbon efficiency (CE), and high catalyst reusability with overall high sustainable values. NAT-CQDs show high recyclability, and the spectral data of reused catalysts indicate that the NAT-CQDs maintained their surface chemistry and electronic properties, suggesting their stability under the tested conditions. This study presents a remarkable instance of NAT-CQDs showcasing covalent catalysis. Expanding on the aforementioned design concept, the utilization of NAT-CQDs' "potential" as distinct colloidal organocatalysts in aqueous environments at the molecular level introduces valuable prospects for aminocatalytic pathways.
Collapse
Affiliation(s)
- Surendra Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Pratibha Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
- Institute Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Krishan Kumar
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Mukul Sethi
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Priyanka Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Aditya Gurjar
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Anshu Dandia
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Tanya Dhuria
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur 302004, India
| |
Collapse
|