1
|
Hung YC, Wu YQ, Ye RH, Hung HM, Hong GB. Magnetically Modified Bentonite for Optimized Erythromycin Removal via RSM and DFT Analysis. Molecules 2025; 30:1792. [PMID: 40333807 PMCID: PMC12029810 DOI: 10.3390/molecules30081792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
Erythromycin (ERY), an antibiotic widely used in human and veterinary medicine, persists in the environment due to its low degradability, accumulating in wastewater and soil. This study presents a novel adsorbent synthesized by magnetically modifying calcined natural bentonite with Fe3O4 nanoparticles to enhance ERY removal. The modification increased the surface area, with the highest adsorption observed at pH 11. Adsorption studies revealed that the Dubinin-Radushkevich isotherm model and pseudo-first-order kinetic model best described the adsorption behavior. Response surface methodology (RSM) was employed to optimize key parameters, including adsorbent dosage, temperature, and contact time. The quadratic model indicated optimal conditions of 41.9 mg adsorbent, 29.1 °C, and 9.6 h of contact time, yielding a maximum ERY removal efficiency of 96.2%. Density functional theory (DFT) analysis provided a molecular-level understanding of the adsorption mechanism, identifying strong interactions between ERY, Fe3O4, and bentonite. The theoretical binding energy aligns with experimental results, confirming the role of magnetic modification in promoting ERY adsorption. This study demonstrates a promising approach for mitigating ERY contamination in aqueous environments.
Collapse
Affiliation(s)
| | | | | | | | - Gui-Bing Hong
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei City 106, Taiwan; (Y.-C.H.)
| |
Collapse
|
2
|
Nie W, Song X, Hua Y, Liu C, Lian J, Wu H, Wang C. Effect of cerium-zirconium oxide-loaded red mud on the selective catalytic reduction of NO in downhole diesel vehicle exhaust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125690. [PMID: 39814163 DOI: 10.1016/j.envpol.2025.125690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/24/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Red mud (RM), an iron oxide-rich solid waste, shows potential as a catalyst for selective catalytic reduction in denitrification processes. This study investigates the catalytic performance and mechanism of metal-modified RM in reducing NO from diesel vehicle exhaust. Acid-washed RM catalysts were impregnated with varying ratios of cerium (Ce) and zirconium (Zr). Our findings revealed that doping with Ce and Zr significantly enhances the denitrification activity at medium and low temperatures, highlighting the promising applicability of these elements as effective modification additives. The optimal performance was observed with a Ce:Zr loading ratio of 1:1, achieving 85% NO conversion at 250 °C. This conversion remained above 80% up to 400 °C, with a maximum of 92% NO conversion at 325 °C, thereby significantly widening the temperature window. Additionally, in-situ DRIFTS analysis revealed that the reaction process followed both the Eley-Rideal and Langmuir-Hinshelwood mechanisms.
Collapse
Affiliation(s)
- Wen Nie
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xinyue Song
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yun Hua
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Chengyi Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jie Lian
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Hao Wu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Chenxi Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
3
|
Zhang B, Zhu W, Hou R, Yue Y, Feng J, Ishag A, Wang X, Qin Y, Sun Y. Recent advances of application of bentonite-based composites in the environmental remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121341. [PMID: 38824894 DOI: 10.1016/j.jenvman.2024.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Bentonite-based composites have been widely utilized in the removal of various pollutants due to low cost, environmentally friendly, ease-to-operate, whereas the recent advances concerning the application of bentonite-based composites in environmental remediation were not available. Herein, the modification (i.e., acid/alkaline washing, thermal treatment and hybrids) of bentonite was firstly reviewed; Then the recent advances of adsorption of environmental concomitants (e.g., organic (dyes, microplastics, phenolic and other organics) and inorganic pollutants (heavy metals, radionuclides and other inorganic pollutants)) on various bentonite-based composites were summarized in details. Meanwhile, the effect of environmental factors and interaction mechanism between bentonite-based composites and contaminants were also investigated. Finally, the conclusions and prospective of bentonite-based composites in the environmental remediation were proposed. It is demonstrated that various bentonite-based composites exhibited the high adsorption/degradation capacity towards environmental pollutants under the specific conditions. The interaction mechanism involved the mineralization, physical/chemical adsorption, co-precipitation and complexation. This review highlights the effect of different functionalization of bentonite-based composites on their adsorption capacity and interaction mechanism, which is expected to be helpful to environmental scientists for applying bentonite-based composites into practical environmental remediation.
Collapse
Affiliation(s)
- Bo Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Weiyu Zhu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Rongbo Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yanxue Yue
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jiashuo Feng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Alhadi Ishag
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Department of Chemical Engineering, Faculty of Engineering and Technical Studies, University of Kordofan, El Obeid, 51111, Sudan
| | - Xiao Wang
- Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Yan Qin
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, PR China.
| | - Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
4
|
Hatvani-Nagy AF, Hajdu V, Ilosvai ÁM, Muránszky G, Sikora E, Kristály F, Daróczi L, Viskolcz B, Fiser B, Vanyorek L. Bentonite as eco-friendly natural mineral support for Pd/CoFe 2O 4 catalyst applied in toluene diamine synthesis. Sci Rep 2024; 14:4193. [PMID: 38378814 PMCID: PMC10879086 DOI: 10.1038/s41598-024-54792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024] Open
Abstract
Toluene diamine (TDA) is a major raw material in the polyurethane industry and thus, its production is highly important. TDA is obtained through the catalytic hydrogenation of 2,4-dinitrotoluene (2,4-DNT). In this study a special hydrogenation catalyst has been developed by decomposition cobalt ferrite nanoparticles onto a natural clay-oxide nanocomposite (bentonite) surface using a microwave-assisted solvothermal method. The catalyst particles were examined by TEM and X-ray diffraction. The palladium immobilized on the bentonite crystal surface was identified using an XRD and HRTEM device. The obtained catalyst possesses the advantageous property of being easily separable due to its magnetizability on a natural mineral support largely available and obtained through low carbon- and energy footprint methods. The catalyst demonstrated outstanding performance with a 2,4-DNT conversion rate exceeding 99% along with high yields and selectivity towards 2,4-TDA and all of this achieved within a short reaction time. Furthermore, the developed catalyst exhibited excellent stability, attributed to the strong interaction between the catalytically active metal and its support. Even after four cycles of reuse, the catalytic activity remained unaffected and the Pd content of the catalyst did not change, which indicates that the palladium component remained firmly attached to the magnetic support's surface.
Collapse
Affiliation(s)
- Alpár F Hatvani-Nagy
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
| | - Viktória Hajdu
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
| | - Ágnes Mária Ilosvai
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
| | - Gábor Muránszky
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
| | - Emőke Sikora
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
| | - Ferenc Kristály
- Institute of Mineralogy and Geology, University of Miskolc, 3515, Miskolc-Egyetemváros, Hungary
| | - Lajos Daróczi
- Department of Solid State Physics, University of Debrecen, P.O. Box 2, Debrecen, 4010, Hungary
| | - Béla Viskolcz
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary
| | - Béla Fiser
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary.
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary.
- Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, Beregszász, 90200, Ukraine.
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236, Lodz, Poland.
| | - László Vanyorek
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515, Hungary.
| |
Collapse
|