1
|
Parakh SK, Tong YW. Upcycling food waste digestate into single-cell microalgae protein through a mixotrophic cultivation approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125827. [PMID: 40381310 DOI: 10.1016/j.jenvman.2025.125827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
The effective use of digestate remains a significant challenge in adopting anaerobic digestion technology for sustainable urban food waste management. This study investigates the potential of converting food waste-derived digestate (FWD) into single-cell protein through mixotrophic cultivation of Chlorella sorokiniana UTEX 1230. The liquid fraction of the digestate (LD) was diluted to 10 % to maintain ammonium-nitrogen (NH4+-N) levels within tolerable ranges (up to 250 mg/L) and enriched with macro- and micronutrients such as magnesium, calcium, sulfur, phosphorus, and trace elements to enhance microalgae growth. Glucose and acetate were tested at different organic carbon-to-nitrogen (Organic-C/N) ratios to assess their effects on biomass production, protein content, and NH4+-N removal. Results indicated that increasing the Organic-C/N ratios to 5 (glucose) or 10 (acetate) enhanced biomass concentration and NH4+-N removal rates. Although protein content declined with higher Organic-C/N ratios, total protein production still increased. Glucose at an Organic-C/N ratio of 5 achieved the highest biomass yield (up to 2.5 g/L), while acetate required an Organic-C/N ratio of 10 to reach comparable levels, pointing to its lower metabolic efficiency. Additionally, biomass protein content under glucose supplementation (40-41 %) surpassed that obtained with acetate (34-36 %). Combining acetate with 60-80 % glucose at a constant Organic-C/N ratio of 5 improved biomass production, but did not match the protein levels observed with glucose alone. Overall, the mixotrophic cultivation approach achieved higher biomass, superior NH4+-N removal rates, and over 40 % protein content, confirming its effectiveness in converting FWD into single-cell protein.
Collapse
Affiliation(s)
- Sheetal Kishor Parakh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
2
|
Zhou B, Zhao G, Yan C, Dong Y, Wang D, Liang J, Zhang M, Zhou Y, Li J, Zhou L. Improving bio-conditioning dewatering performance of food waste anaerobic digestate at low ambient temperatures by heating treatment. ENVIRONMENTAL TECHNOLOGY 2025; 46:827-836. [PMID: 38898673 DOI: 10.1080/09593330.2024.2369277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Food waste anaerobic digestate (FWAD) containing high concentrations of contaminants must be purified or recycled. Bio-conditioning dewatering followed by activated sludge process (BDAS) has emerged as a promising technology for treating FWAD. However, the bio-conditioning dewatering as a pivotal step of BDAS is often negatively affected by low ambient temperatures often occurred in winter. This study investigated the role of heating FWAD in improving the bio-conditioning dewatering performance of FWAD. Batch experiments demonstrated that the bio-conditioning dewatering efficiency increased with temperature rise. Notably, due to the low energy consumption, 50°C was considered to be the most appropriate heating treatment temperature, realizing a drastic reduction of specific resistance to filtration (SRF) of bio-conditioned FWAD from initial 1.24 × 1012 m/kg in the control at a ambient temperature of 10°C to 5.42 × 1011 m/kg and a saving of 25% in bio-conditioning reagents cost. The results of the pilot-scale and large-scale experiments revealed that heating treatment made the bio-conditioning dewatering more stable regardless of the fluctuation of ambient temperature in practical engineering. The decrease in the viscosity of bio-conditioned FWAD and the enhancement in microbial fermentation liquor flocculation capacity through heating treatment played pivotal roles in improving the bio-conditioning dewatering performance of FWAD. This work provides a cost-effective strategy to achieve efficient bio-conditioning dewatering at a relatively low ambient temperature, which was helpful in the engineering application of the novel BDAS process in wastewater treatment.
Collapse
Affiliation(s)
- Bo Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Guangliang Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Cheng Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yan Dong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Dianzhan Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Jianru Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Mingjiang Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yujun Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, People's Republic of China
| | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, People's Republic of China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Habchi S, Pecha J, Šánek L, Karouach F, El Bari H. Sustainable valorization of slaughterhouse waste through anaerobic digestion: A circular economy perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121920. [PMID: 39029174 DOI: 10.1016/j.jenvman.2024.121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Slaughterhouse waste (SHW) poses significant environmental challenges due to its complex composition. In response, a novel review exploration of anaerobic digestion (AD) as a means of valorising SHW within the context of the circular economy (CE) is presented. The physicochemical properties of individual SHW, representing key parameters for the correct management of the AD process, are scrutinized. These parameters are further connected with identifying suitable pretreatment methods to enhance biogas production. Subsequently, the review examines the diverse technologies employed in the AD of SHW, considering the complexities of mono- or co-digestion. Various AD systems are evaluated for their effectiveness in harnessing the substantial biogas production potential from SHW, encompassing key parameters, reactor configurations, and operational conditions that influence the AD process. Moreover, the review interestingly extends its scope to the recovery and management of digestate, the by-product of AD. Along with the digestate composition, strategies for various utilization of this by-product are discussed. This investigation thus underscores, within the principles of the CE, the dual sustainable benefits of SHW processing via AD in biogas production and utilization of the resultant nutrient-rich digestate in various sectors.
Collapse
Affiliation(s)
- Sanae Habchi
- Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
| | - Jiří Pecha
- Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511, 760 05, Zlin, Czech Republic
| | - Lubomír Šánek
- Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511, 760 05, Zlin, Czech Republic
| | - Fadoua Karouach
- African Sustainable Agriculture Research (ASARI), University Mohammed VI Polytechnic (UM6P), Laâyoune, Morocco
| | - Hassan El Bari
- Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
4
|
Zhou B, Zhao G, Yan C, Dong Y, Wang D, Liang J, Zhang M, Zhang D, Zhou Y, Li J, Zhou L. Aeration pre-treatment role in improving the performance of bio-conditioning dewatering of food waste anaerobic digestate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:298-306. [PMID: 38368642 DOI: 10.1016/j.wasman.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Bio-conditioning dewatering followed by activated sludge process (BDAS) is a promising technology for purifying food waste anaerobic digestate (FWAD). However, the bio-conditioning dewatering efficiency is often affected by FWAD properties and ambient temperature. Here, we firstly reported that aeration pre-treatment of FWAD played an important role in improving the bio-conditioning dewatering performance of FWAD. The study found that the accumulated carbonate (CO32-) in FWAD severely affected the flocculation of Fe-containing flocculant formed in microbial fermentation liquor due to the competitive consumption of the flocculant by CO32-. The capillary suction time (CST) and specific resistance to filtration (SRF) of the bio-conditioned FWAD increased from initial 77.8 s and 2.0 × 1012 m/kg to 122.7 s and 3.4 × 1012 m/kg, respectively, within 1 day of aeration. Prolonged aeration pre-treatment of FWAD could reduce its CO32- concentration and total alkalinity. Additionally, the aeration pre-treatment simultaneously decreased the proportion of macromolecular organic matter that hindered dewatering and the content of total solids (TS) and hydrophilic protein-like substances in FWAD. After 20 days of aeration followed by bio-conditioning, the CST and SRF reduced to final 36.5 s and 2.3 × 1011 m/kg, respectively, indicating a substantial improvement in dewatering performance. Successive forced aeration combined with the addition of CaCl2 to eliminate adverse factors mainly CO32- was a feasible and cost-effective strategy to realize bio-conditioning dewatering of FWAD in less than 2 days and a lower reagents dose of bio-conditioning, which was helpful in the engineering application of the novel BDAS process for FWAD purification.
Collapse
Affiliation(s)
- Bo Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangliang Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Dong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dianzhan Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianru Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Mingjiang Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dejin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujun Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| |
Collapse
|
5
|
Zhou B, Wang D, Yan C, Zhao G, Liu X, Zhang D, Liang J, Zhou Y, Li J, Zhou L. A novel approach for purifying food waste anaerobic digestate through bio-conditioning dewatering followed by activated sludge process: A case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123644. [PMID: 38402935 DOI: 10.1016/j.envpol.2024.123644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Although anaerobic digestion is the mainstream technology for treating food waste (FW), the high pollutant concentration in the resultant food waste anaerobic digestate (FWAD) often poses challenges for the subsequent biochemical treatment such as activated sludge process. In this study, taking a typical FW treatment plant as an example, we analyzed the reasons behind the difficulties in treating FWAD and tested a novel process called as bio-conditioning dewatering followed by activated sludge process (BDAS) to purify FWAD. Results showed that high concentrations of suspended solids (SS) (16439 ± 475 mg/L), chemical oxygen demand (COD) (24642 ± 1301 mg/L), and ammonium nitrogen (NH4+-N) (2641 ± 52 mg/L) were main factors affecting the purification efficiency of FWAD by the conventional activated sludge process. By implementing bio-conditioning dewatering for solid-liquid separation, near 100% of SS and total phosphorus (TP), 90% of COD, 38% of total nitrogen (TN), and 37% of NH4+-N in the digestate could be effectively removed or recovered, consequently generating the transparent filtrate with relatively low pollution load and dry sludge cake (<60% of moisture content). Furthermore, after ammonia stripping and biochemical treatment, the effluent met the relevant discharge standards regulated by China, with the concentrations of COD, TN, NH4+-N, and TP ranging from 151 to 405, 10-56, 0.9-31, and 0.4-0.8 mg/L, respectively. This proposed BDAS approach exhibited stable performance and low operating costs, offering a promising solution to purify FWAD in practical engineering and simultaneously realize resource recovery.
Collapse
Affiliation(s)
- Bo Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dianzhan Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangliang Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dejin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianru Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujun Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Nikolaidou C, Mola M, Papakostas S, Aschonitis VG, Monokrousos N, Kougias PG. The effect of anaerobic digestate as an organic soil fertilizer on the diversity and structure of the indigenous soil microbial and nematode communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32850-9. [PMID: 38517633 DOI: 10.1007/s11356-024-32850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Anaerobic digestate is a popular soil additive which can promote sustainability and transition toward a circular economy. This study addresses how anaerobic digestate modifies soil health when combined with a common chemical fertilizer. Attention was given to soil microbes and, a neglected but of paramount importance soil taxonomic group, soil nematodes. A mesocosm experiment was set up in order to assess the soil's microbial and nematode community. The results demonstrated that the microbial diversity was not affected by the different fertilization regimes, although species richness increased after digestate and mixed fertilization. The composition and abundance of nematode community did not respond to any treatment. Mixed fertilization notably increased potassium (K) and boron (B) levels, while nitrate (NO3-) levels were uniformly elevated across fertilized soils, despite variations in nitrogen input. Network analysis revealed that chemical fertilization led to a densely interconnected network with mainly mutualistic relationships which could cause ecosystem disruption, while digestate application formed a more complex community based on bacterial interactions. However, the combination of both orchestrated a more balanced and less complex community structure, which is more resilient to random disturbances, but on the downside, it is more likely to collapse under targeted perturbations.
Collapse
Affiliation(s)
- Charitini Nikolaidou
- Soil and Water Resources Institute, Hellenic Agricultural Organization Dimitra, 57001, Thessaloniki, Greece
- University Center of International Programmes of Studies, International Hellenic University, 57001, Thessaloniki, Greece
| | - Magkdi Mola
- Soil and Water Resources Institute, Hellenic Agricultural Organization Dimitra, 57001, Thessaloniki, Greece
- University Center of International Programmes of Studies, International Hellenic University, 57001, Thessaloniki, Greece
| | - Spiros Papakostas
- Department of Science and Technology, International Hellenic University, 57001, Thessaloniki, Greece
| | - Vassilis G Aschonitis
- Soil and Water Resources Institute, Hellenic Agricultural Organization Dimitra, 57001, Thessaloniki, Greece
| | - Nikolaos Monokrousos
- University Center of International Programmes of Studies, International Hellenic University, 57001, Thessaloniki, Greece
| | - Panagiotis G Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organization Dimitra, 57001, Thessaloniki, Greece.
| |
Collapse
|
7
|
Tiong YW, Sharma P, Xu S, Bu J, An S, Foo JBL, Wee BK, Wang Y, Lee JTE, Zhang J, He Y, Tong YW. Enhancing sustainable crop cultivation: The impact of renewable soil amendments and digestate fertilizer on crop growth and nutrient composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123132. [PMID: 38081377 DOI: 10.1016/j.envpol.2023.123132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024]
Abstract
Utilizing digestate as a fertilizer enhances soil nutrient content, improves fertility, and minimizes nutrient runoff, mitigating water pollution risks. This alternative approach replaces commercial fertilizers, thereby reducing their environmental impact and lowering greenhouse gas emissions associated with fertilizer production and landfilling. Herein, this study aimed to evaluate the impact of various soil amendments, including carbon fractions from waste materials (biochar, compost, and cocopeat), and food waste anaerobic digestate application methods on tomato plant growth (Solanum lycopersicum) and soil fertility. The results suggested that incorporating soil amendments (biochar, compost, and cocopeat) into the potting mix alongside digestate application significantly enhances crop yields, with increases ranging from 12.8 to 17.3% compared to treatments without digestate. Moreover, the combination of soil-biochar amendment and digestate application suggested notable improvements in nitrogen levels by 20.3% and phosphorus levels by 14%, surpassing the performance of the those without digestate. Microbial analysis revealed that the soil-biochar amendment significantly enhanced biological nitrification processes, leading to higher nitrogen levels compared to soil-compost and soil-cocopeat amendments, suggesting potential nitrogen availability enhancement within the rhizosphere's ecological system. Chlorophyll content analysis suggested a significant 6.91% increase with biochar and digestate inclusion in the soil, compared to the treatments without digestate. These findings underscore the substantial potential of crop cultivation using soil-biochar amendments in conjunction with organic fertilization through food waste anaerobic digestate, establishing a waste-to-food recycling system.
Collapse
Affiliation(s)
- Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Pooja Sharma
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Shuai Xu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Engineering Research Center of Edible and Medicinal Fungi of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jie Bu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Soobin An
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Jordan Bao Luo Foo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Bryan Kangjie Wee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Yueyang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Jonathan Tian En Lee
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
8
|
Gurmessa B, Cocco S, Ashworth AJ, Udawatta RP, Cardelli V, Ilari A, Serrani D, Fornasier F, Del Gatto A, Pedretti EF, Corti G. Short term effects of digestate and composted digestate on soil health and crop yield: Implications for sustainable biowaste management in the bioenergy sector. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167208. [PMID: 37730036 DOI: 10.1016/j.scitotenv.2023.167208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Composting mitigates environmental risks associated with using solid digestate as fertilizer. However, evidence is lacking on benefits of using composted digestate as fertilizer in enhancing soil health and increasing agronomic yield compared to non-composted digestate (hereafter, digestate). A field study was conducted consisting of digestate, composted digestate, co-composted digestate with biogas feedstocks (corn [Zea mays L.] silage, poultry litter, corn silage + poultry litter or food processing by-product), inorganic nitrogen fertilizer, and control (no treatment applied) on soil microbial biomass, enzyme activities (EA), soil organic carbon (SOC), bioavailable P (P), total nitrogen (TN), soil health index (SHI), and sunflower (Helianthus annuus L.) yield. The Partial Least Square Path Model (PLS-PM) was used to predict: 1) nutrient cycling in response to changes in microbial growth and EA and 2) agronomic yield in response to SHI and soil nutrients dynamics. Composted digestate had equivalent soil health benefits with most of co-composted materials and digestate, albeit agronomic yield was greatest with composted digestate, which was 40 % and 100 % greater than with inorganic nitrogen fertilizer and digestate, respectively, indicating composted digestate's potential to replace the synthetic N fertilizer. Moreover, composts from a sole digestate, rather than the ones from co-composted with fresh feedsstocks, can be promising organic amendments and fertilizers for growing sunflower. The PLS-PM model identified that triggered microbial biomass growth and EA, following digestate and composted digestate applications, catalyzed organic matter decomposition, resulting in enhanced nutrients contents and soil health. However, the model revealed that improved SHI did not predict agronomic yield, as opposed to P and TN, suggesting agronomic performance may have been more sensitive to changes in specific soil nutrients status than the overall soil health condition. We conclude that the benefits of composted digestate as fertilizer hint the significance of digestate valorization via post-digestate composting and compost utilization for sustainability of the bioenergy sector.
Collapse
Affiliation(s)
- Biyensa Gurmessa
- The Center for Agroforestry, School of Natural Resources, 302 Anheuser-Busch Natural Resources Building, University of Missouri-Columbia, Columbia, MO 65211, USA; Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Stefania Cocco
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Amanda J Ashworth
- USDA-ARS, Poultry Production and Product Safety Research Unit, 1260 W. Maple St., Fayetteville, AR 72701, USA
| | - Ranjith P Udawatta
- The Center for Agroforestry, School of Natural Resources, 302 Anheuser-Busch Natural Resources Building, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Valeria Cardelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Alessio Ilari
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Dominique Serrani
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Flavio Fornasier
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology (CREA-VE), 34170 Gorizia, Italy
| | - Andrea Del Gatto
- Council for Agricultural Research and Economics, Research Centre for Cereals and Industrial Crops (CREA-CI), 60027 Osimo, AN, Italy
| | - Ester Foppa Pedretti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Giuseppe Corti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, oo184 Rome, Italy
| |
Collapse
|
9
|
Ji Y, Cao Y, Wang Y, Wang C, Qin Z, Cai W, Yang Y, Yan S, Guo X. Effects of adding lignocellulose-degrading microbial agents and biochar on nitrogen metabolism and microbial community succession during pig manure composting. ENVIRONMENTAL RESEARCH 2023; 239:117400. [PMID: 37838195 DOI: 10.1016/j.envres.2023.117400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
This study assessed the influence of the additions of lignocellulose-degrading microbial agents and biochar on nitrogen (N) metabolism and microbial community succession during pig manure composting. Four treatments were established: CK (without additives), M (lignocellulose-degrading microbial agents), BC (biochar), and MBC (lignocellulose-degrading microbial agents and biochar). The results revealed that all treatments with additives decreased N loss compared with CK. In particular, the concentrations of total N and NO3--N were the highest in M, which were 21.87% and 188.67% higher than CK, respectively. Meanwhile, the abundance of denitrifying bacteria Flavobacterium, Enterobacter, and Devosia reduced with additives. The roles of Anseongella (nitrifying bacterium) and Nitrosomonas (ammonia-oxidizing bacterium) in NO3--N transformation were enhanced in M and BC, respectively. N metabolism pathway prediction indicated that lignocellulose-degrading microbial agents addition could enhance N retention effectively mainly by inhibiting denitrification. The addition of biochar enhanced oxidation of NH4+-N to NO2--N and N fixation, as well as inhibited denitrification. These results revealed that the addition of lignocellulose-degrading microbial agents individually was more conducive to improve N retention in pig manure compost.
Collapse
Affiliation(s)
- Yahui Ji
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yanzhuan Cao
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yan Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Chang Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhenghui Qin
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Wenrun Cai
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Shuangdui Yan
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|